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Abstract

Low grade gliomas are the most frequent brain tumors in children and encompass a spectrum of histologic entities
which are currently assigned World Health Organisation grades | and Il. They differ substantially from their adult
counterparts in both their underlying genetic alterations and in the infrequency with which they transform to higher
grade tumors. Nonetheless, children with low grade glioma are a therapeutic challenge due to the heterogeneity in
their clinical behavior — in particular, those with incomplete surgical resection often suffer repeat progressions with
resultant morbidity and, in some cases, mortality. The identification of up-regulation of the RAS—-mitogen-activated
protein kinase (RAS/MAPK) pathway as a near universal feature of these tumors has led to the development of targeted
therapeutics aimed at improving responses while mitigating patient morbidity. Here, we review how molecular
information can help to further define the entities which fall under the umbrella of pediatric-type low-grade glioma. In
doing so we discuss the specific molecular drivers of pediatric low grade glioma and how to effectively test for them,
review the newest therapeutic agents and their utility in treating this disease, and propose a risk-based stratification
system that considers both clinical and molecular parameters to aid clinicians in making treatment decisions.
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Introduction

Tumors of the central nervous system (CNS) are the most
frequent solid tumors in children, with approximately 5.4-
5.6 diagnoses per 100,000 [48, 154, 155]. Of those diag-
nosed, 0.7 per 100,000 will succumb to their disease, making
CNS tumors the leading cause of cancer related death in
children [154, 155, 168]. Within this group, pediatric-type
low-grade gliomas (pLGG) are the most frequent, account-
ing for approximately 30% of all childhood brain tumors
[154, 155]. pLGG are defined as World Health Organization
(WHO) grade I or II malignancies and encompass a wide
array of histologies that can arise throughout the neuro-axis
(Fig. 1a-c) [131, 132].
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Management of pLGG is intimately related to surgical
resection, and complete resection remains the most fa-
vorable predictor of patient outcome [225]. Often, this is
achievable for superficial lesions such as those arising in
the cerebral hemispheres or posterior fossa, but is not
always feasible for deep seated or highly infiltrative tu-
mors [225]. In these cases, progressive residual disease
has historically been treated with adjuvant chemotherapy
or radiation [12, 55, 122, 124, 135, 139, 157, 183, 189].
Importantly, these treatments are associated with long-
term sequelae and, particularly for radiation, increased
mortality [55, 71, 118, 138, 145]. These concerns are
poignant in a disease where 10-year overall survival (OS)
exceeds 90%. However, with progression-free survival
(PES) at approximately 50%, up to half of patients will
require adjuvant therapy. As such, a more robust risk
stratification is required to help guide the type and in-
tensity of therapy warranted. In the past, the degree of
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Fig. 1. Magnetic resonance imaging (MRI) depicting pediatric low-grade glioma arising in the a. Cerebellum, b. Thalamus, and c. Occipital Lobe.
Hematoxylin and eosin (H&E) staining highlighting the hallmark histologic features of d. Pilocytic astrocytoma, e. Diffuse astrocytoma, f.
Pleomorphic xanthoastrocytoma, g. Ganglioglioma, h. Dysembryoplastic neuroepithelial tumour, i. Oligodendroglioma, and j. Angiocentric glioma

surgical resection, histological diagnosis and age were
used to determine prognosis. However, more recently
the molecular underpinnings of pLGG have emerged as
a powerful tool to supplement the stratification of these
tumors.

In the last decade, significant molecular data has
emerged to suggest that pLGG near universally up-
regulate the RAS-mitogen-activated protein kinase
(RAS/MAPK) pathway [34, 96, 149, 229]. This data
has led to increasing use of targeted therapeutics that
supplement and/or replace older cytotoxic approaches.
As the era of targeted therapeutics inevitably arrives,
a concise classification scheme recognizing the mo-
lecular features of pLGG is needed. Here, we will

review the histological spectrum of pLGG, the mo-
lecular alterations that have been identified in these
entities and how to effectively test for them, and re-
view the newest therapeutic agents and their utility in
treating this disease. We conclude with proposing a
multi-faceted approach for stratifying pLGG that con-
siders clinical, histologic and molecular parameters
and aims to aid clinicians in their future treatment
decisions.

Morphologic Classification of pLGG

pLGG form a heterogeneous group of neoplasms that
encompass tumors of primarily glial histology, including
astrocytic and/or oligodendroglial, and tumors of mixed
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neuronal-glial morphology. These tumors are considered
grades I and II according to the current WHO classi-
fication where they are distinguished from high grade
glioma on the basis of specific morphologic features
or, in the case of diffuse glioma, based on the ab-
sence of necrosis, mitoses and microvascular prolifer-
ation [131, 132, 166, 199]. Histologic diagnoses which
fall under the umbrella of pLGG and their hallmark
molecular alterations are listed in Table 1; their typ-
ical histologic features are depicted in Fig. 1d-j.

In many cases the different histologic entities are
readily distinguished, however cases of overlapping
morphology are well documented. These include, for
example, reports of histological overlap between pleo-
morphic xanthoastrocytoma and ganglioglioma [3, 62,
208] and between dysembryoplastic neuroepithelial
tumor and oligodendroglioma [70, 114]. In addition,
tumors which are classically well circumscribed, such
as pilocytic astrocytoma, may possess an infiltrative
component [34], leading to confusion and difficulty in
grading. A precise histologic diagnosis may be par-
ticularly challenging in deep seated midline tumors,
for which a small biopsy is often all that is available.
Rarely do these capture the true complexity of the
tumor and the classic morphologic features by which
diagnoses are made are often lacking.

In addition to these difficulties, pLGG overlap mor-
phologically with entities more commonly found in
adults. This creates confusion regarding appropriate
grading and treatment and is exacerbated by use of
similar terminology, namely diffuse astrocytoma and
oligodendroglioma. In the most recent WHO iter-
ation, both diffuse astrocytoma and oligodendroglioma
have been split based on the presence or absence of
IDH1 mutations, in addition to 1p/19q co-deletion for
the latter. Tumors with the morphology of oligo-
dendroglioma or diffuse astrocytoma in the pediatric
age group often do not have IDHI mutations and/or
1p/19q co-deletion and are therefore considered
oligodendroglioma, NEC or, of even greater concern,
diffuse astrocytoma, IDH-wildtype. The latter raising
concern for molecular glioblastoma (GBM). Both of
these diagnoses may lead to conventional adult diffuse
glioma treatments involving cytotoxic chemotherapy
and radiation, particularly in the adolescent and
young adult age group. However, in IDHI wild-type
cases, pediatric oligodendrogliomas most frequently
harbor alterations in FGFRI including TKD-
duplications or SNVs or BRAF p.V600OE (Table 1).
Recently, the entity polymorphous low-grade neuroepithe-
lial tumor of the young (PLNTY) was described [88].
These tumors invariably possessed oligodendroglioma-like
cellular components and highly infiltrative morphological
features, yet boast a benign clinical course uncommonly
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Table 1 Histological diagnosis and the common molecular
events of WHO-recognized pLGG. RTK: receptor tyrosine kinase,
SNV: single nucelotide variant

Histological Diagnosis Common Molecular Events

Glial Tumors

Pilocytic Astrocytoma

Subependymal Giant Cell
Astrocytoma

Diffuse Astrocytoma

Pleomorphic Xanthoastrocytoma

Oligodendroglioma

Mixed Glioneuronal Tumors

Ganglioglioma

Desmoplastic Infantile
Astrocytoma and Ganglioglioma

Dysembryoplastic
Neuroepithelial Tumor

Papillary Glioneuronal Tumor

Rosette-forming Glioneuronal
Tumor

Angiocentric Glioma

Chordoid Glioma of Third
Ventricle

Polymorphous Low-Grade
Neuroepithelial tumor of the
Young (PLNTY)

Multinodular and vacuolating
neuronal tumor (MVNT)

KIAA1549-BRAF (70-80%)
FGFR1-TACCT (3-5%)
FGFRT SNV (3-5%)

BRAF p.V60OE (3-5%)
Other BRAF Fusions (2-5%)
CRAF Fusions (2-5%)
PTPNT1 SNV (2-5%)
KRAS/HRAS SNV (2-5%)

TSC1/2 SNV (85-95%)

BRAF p.V60OE (20-40%)
MYBL1 alteration (5-10%)
KIAAT1549-BRAF (5-10%)

FGFRT SNV (2-5%)

H3.3 p.K27M (2-5%)

IDH1 p.R132H (2-5%)

Other RTK SNV/Fusions (2-3%)

BRAF p.V60OE (80-90%)

FGFRI-TKD duplication (10-20%)
FGFRT SNV (10-20%)

BRAF p.V600OE (5-10%)
FGFRI-TACCT (3-5%)

IDH1 p.R132H (3-5%)

1p/19q co-deletion (3-5%)

BRAF p.V60OE (40-50%)
KIAA1549-BRAF (10-15%)

BRAF pV600E/D (40-60%)
FGFRT SNV (5-10%)
KIAA1549-BRAF (2-5%)

FGFRI1-TKD duplication (20-30%)
FGFRT SNV (20-30%)
FGFRI-TACCT (10-15%)

Other RTK SNV/Fusions (5-10%)
BRAF p.V60OE (5-10)

SLC44A1-PRKCA (80-90%)

PIK3CA SNV (20-30%)
KIAA1549-BRAF (20-30%)
FGFR1 SNV (20-30%)

MYB (80-90%)
PRKCA SNV (80-90%)

BRAF p.V600E (30-40%)
FGFR2/3 Fusions (30-40%)

MAP2K1 SNV/Indel (50-60%)
BRAF p.V60OE (5-10%)
Other BRAF SNV (5-10%)
FGFR2 Fusions (3-5%)

seen in classic IDH-mutant oligodendroglioma [31, 88].
These tumors do not harbor /DHI mutations, but rather
FGFR2/3 fusions (discussed further below) or BRAF
p.V60OE. IDHI wild-type diffuse astrocytoma most fre-
quently harbor BRAF p.V600E mutations, accounting for
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~40% of cases (Table 1). In addition, they sometimes con-
tain KIAA1549-BRAF fusions, FGFR1 SNVs, or MYB or
MYBLI alterations. The latter alterations were originally
described in series of pediatric diffuse astrocytomas [174,
212] and reports thus far suggest they have a benign clin-
ical course without therapy [31]. Recently, these have been
termed isomorphic diffuse glioma [223]. In these cases,
misdiagnosis may result in over-treatment, leading to po-
tentially harmful sequelae.

In recognition of the increased understanding of the
molecular underpinnings of diffuse gliomas in adults,
IDHI mutation and 1p/19q deletion status were incor-
porated into the most recent WHO revision in order to
improve diagnostic reproducibility and provide import-
ant prognostic information for patients [132]. A similar
incorporation of molecular features into the classifica-
tion of pLGG will help to more accurately identify these
entities and, importantly, distinguish them from adult-
type gliomas, which carry a worse prognosis and require
more aggressive therapy.

The Molecular Landscape of pLGG

Up-regulation of the RAS/MAPK Pathway

The last decade has produced unparalleled insights into
the underlying biology of pLGG. Importantly, we now
know that the majority of pLGG are driven by a single
genetic event resulting in up-regulation of the RAS/
MAPK pathway [34, 96, 149, 229]. Our first indications
of RAS/MAPK involvement in pLGG pathogenesis came
from Neurofibromatosis Type I (NF1) patients of whom
10-15% develop low-grade glioma [14, 196, 218]. Since
then, molecular profiling efforts have uncovered
additional alterations within this pathway with such
frequency that many have postulated that pLGG is a
"one-pathway disease" [34, 96, 149, 229]. An overview of
the most common RAS/MAPK pathway alterations in
pLGG is shown in Fig. 2.

Neurofibromatosis Type 1

Neurofibromatosis Type I (NF1) is the most common
inheritable tumor predisposition syndrome worldwide
and is associated with a wide range of clinical mani-
festations including skin pigmentation abnormalities,
learning disabilities, seizures, and vasculopathies [16,
19]. NF1 is caused by a germline mutation in the
NFI tumor suppressor gene, which encodes neurofi-
bromin, a GTPase-activating protein that functions as
a negative regulator RAS [61, 89, 177]. 10-15% of
children with NF1 will develop a low-grade glioma
within the optic pathway, with an additional 3-5%
arising outside of the optic pathway [14, 195, 196,
218]. NF1-associated gliomas usually show loss of the
wild-type allele and, as a result, neurofibromin's en-
dogenous function as a negative regulator of RAS is
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lost. Typically, NF1-pLGG are asymptomatic and in-
dolent, requiring no therapeutic intervention and in
some cases, regress without treatment [87, 119, 126,
127, 159]. However, in cases of clinical deterioration
(most commonly vision loss), chemotherapy, and not
radiation, is the first line of treatment [87, 119, 126,
127, 159, 197].

Despite their benign course, NF1-pLGG arising in
younger children (<2 years) and/or outside of the
optic pathway are recognized as being at a higher risk
of progression and/or death [59]. Historically, NF1-
pLGG are not biopsied due to their precarious loca-
tion and the lack of clinical utility of the additional
information obtained. However, a recent study uncov-
ered that NF1-pLGG do harbor additional genetic al-
terations [37]. Most commonly, these were additional
aberrations affecting the RAS/MAPK pathway or
those involving transcriptional regulators. Further-
more, the mutational profile of NF1-pLGG was dis-
tinct from NF1-high grade glioma (HGG), which
instead harbored alterations in TP53, CDKN2A and
ATRX. Therefore, obtaining a biopsy from, at mini-
mum, patients deemed higher risk, may prove valu-
able in identifying patients that require refined and/or
novel treatments and distinguishing them from NF1-
HGG, particularly in adults.

KIAA1549-BRAF

Early studies examining copy number alterations in
pilocytic astrocytoma identified focal gains at 7q34
which included the BRAF gene [44, 167]. Further
work by Jones et. al. refined this discovery, showing
that this gain was the result of a tandem duplication
resulting in the formation of a novel oncogenic fu-
sion, KIAA1549-BRAF [99]. This rearrangement re-
sulted in the N-terminal regulatory domain of BRAF
being lost, leading to downstream up-regulation of
the RAS/MAPK signaling pathway [99]. Five separate
KIAA1549-BRAF exon-exon junctions have been de-
scribed including 169, 15;9, 16;11, 18;10, and 19;9 in
order of prevalence [99, 60, 200, 211], all resulting in
the loss of BRAF's regulatory domain. Subtle clinical
differences between fusion variants have been noted
but whether their underlying biology differs, and if
additional roles of KIAA1549 exist, remain unknown
[57, 78, 116, 181].

KIAA1549-BRAF is the most frequent molecular alter-
ation in pLGG, and is significantly enriched in pilocytic
astrocytoma and in tumors arising in the posterior fossa/
cerebellum (Fig. 3a, b). Despite this enrichment, add-
itional studies have confirmed KIAA1549-BRAF in a
spectrum of histologies and CNS locations [60, 90, 97,
100, 116, 171, 200, 211, 229]. In total, KIAA1549-BRAF
accounts for 30-40% of pLGG at the population level
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Fig. 2. a. Schematic of the RAS/MAPK alterations identified across pediatric low-grade glioma. b. Average frequencies of RAS/MAPK alterations
identified in pediatric low-grade glioma at the population level. c. Alteration types identified in pediatric low-grade glioma
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[186]. Due to its predilection for arising in highly cir-
cumscribed histologies (pilocytic astrocytoma) and in
surgically amenable locations (cerebellum), tumors with
a KIAA1549-BRAF fusion are often amendable to
complete surgical resection and have excellent overall
survival and rarely progress [11, 80, 84, 123]. However,
when arising in deep seated regions of the brain where
complete surgical resection is not possible, progression
is more common [123]. The presence of KIAAI1549-
BRAF can aid in tumor diagnosis as it is not found in
adult-type diffuse glioma and, with rare exceptions, con-
firms a pLGG diagnosis [78, 116, 178, 181]. Further-
more, it is helpful in identifying tumors susceptible to
targeted therapeutics (discussed further below).

Other BRAF Fusions

In addition to KIAA1549-BRAF, BRAF rearrangements
involving other fusion partners including RNF130 [97],
SRGAP [99], FAM131B [32], CLCN6 [97], GNAII [97],
MKRN1 [97], GIT2 [81], and FXRI [229] among others
have also been documented. As with KIAA1549-BRAF,
these fusions result in the removal of BRAFs N-
regulatory domain and result in constitutive up-
regulation of the RAS/MAPK pathway. As these fusions
are extremely rare and often identified in isolated case
studies, whether their impact on patient outcome differs
from KIAA1549-BRAF remains unclear. However, in
contrast to KIAA1549-BRAF, these non-canonical fu-
sions are frequently observed in hemispheric and/or
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brainstem lesions and tend to arise in older children and
adolescents. Further, despite also primarily arising in PA,
they are also seen in an array of less common histologies
[32, 60, 81, 97, 229]. Whether these unique clinical fea-
tures are related to a different mechanism of tumorigen-
esis remains to be investigated.

BRAF p.V600E
Mutations in BRAF, primarily in which a valine is re-
placed with a glutamic acid at position 600 (p.V60OE),
act as a phosphomimetic within the RAS/MAPK path-
way, rendering it constitutively active [64, 222]. In
pLGG, the prevalence of the BRAF p.V600OE mutation
varies notably depending on the histology and location
of the tumor (Fig. 3a, b). Pleomorphic xanthoastrocy-
toma (40-80%) [46, 68, 85, 191], diffuse astrocytoma (30-

40%) [190, 191] and ganglioglioma (25-45%) [85, 123,
164, 191] frequently harbor BRAF p.V60OE, while in
pilocytic astrocytoma (5-10%) [85, 123, 191] or glioneur-
onal tumors (5%) [191, 47, 49], BRAF p.V60OE is less
common. Supratentorial lesions are also more likely to
harbor BRAF p.V60OE as compared to cerebellar lesions,
while the inverse is true for KIAA1549-BRAF (Fig. 3a)
[34, 46, 49, 171]. Importantly, despite these enrich-
ments, BRAF p.V60OE is neither histologically nor
spatially restricted [47, 123, 171]. In addition to
p-V60OE, rare cases of BRAF p.V600D and BRAF
p-V504_R506dup have been described in desmoplastic
infantile astrocytomas/gliomas and pilocytic astrocy-
toma, respectively [27, 72, 107].

As a group, pLGGs with BRAF p.V600OE have worse
OS and PFS compared to other pLGG [28, 35, 50, 123,
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158]. Further, BRAF p.V60OE pLGG, especially in the
context of co-occurring CDKN2A deletions (discussed
further below), are significantly more likely to transform
into HGG; an event which may occur 10-20 years after
the initial diagnosis [142]. While not exclusive to this
entity, transformation has been most commonly describe
for pleomorphic xanthoastrocytoma which has been sug-
gested to be within the same family as epithelioid GBM
[4, 63, 210]. These "pleomorphic xanthoastrocytoma-
like" GBM carry a better prognosis compared to other
GBM, but are still significantly worse when compared to
pLGG [117]. The increased likelihood of malignant be-
havior in pleomorphic xanthoastrocytoma and in BRAF
p.V600E mutated tumors with CDKN2A deletion has led
to a debate regarding the prognostic significance of
BRAF p.V60OE alone [101]. Future studies utilizing ex-
tensive cohorts with long-term follow-up will be re-
quired to address these questions conclusively.

FGFR1

FGFR1 is a receptor tyrosine kinase (RTK) that plays a
key role in signal transduction via activation of its intra-
membranous tyrosine kinase domain (TKD) [69, 216].
While FGFR1 mutations and/or fusions are only present
in 3% of adult GBM [176, 202], it is the second most
commonly altered gene in pLGG. FGFRI alterations in
pLGG arise via three mechanisms: FGFR1 mutations,
FGFRI-TACCI fusions and FGFRI-TKD duplications
[97, 171, 229]. FGFRI mutations primarily consist of
p-N546K and p.K656E and occur in 5-10% of patients
[97, 171, 229]. As with BRAF alterations, these are histo-
logically and spatially enriched, most frequently arising
in dysembryoplastic neuroepithelial tumors, other glio-
neuronal tumors, and in midline brain structures (Fig.
3a-b). In these tumor subtypes, FGFRI mutations occur
in up to 20% of patients, and in rare cases may be germ-
line events [97, 136, 179, 191]. However, FGFRI muta-
tions have also been reported in pilocytic astrocytoma,
oligodendroglioma, and other histologies, and therefore
are not histologically restricted [11, 67, 97, 171, 187,
229]. FGFR1 TKD-duplication and FGFRI-TACCI fu-
sions have each been described in 2-3% of tumors, [97,
171, 187, 229]. As with FGFRI mutations, FGFR1 TKD-
duplication is more common in dysembryoplastic neuro-
epithelial tumors and other glioneuronal tumors, while
FGFRI-TACCI is more common in pilocytic astrocy-
toma. However, neither of these alterations are histologi-
cally restricted, also appearing in oligodendroglioma and
diffuse astrocytoma, for example (Fig. 3a-b) [97, 171,
187, 229]. All of these alterations result in FGFR1 auto-
phosphorylation [97, 229], leading to up-regulation of
the RAS/MAPK pathway. In contrast to BRAF alter-
ations, the upstream location of FGFRI (and the other
receptor tyrosine kinase alterations described below) can
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result in up-regulation of the PI3K/AKT/mTOR pathway
as well as depicted in Fig. 2a.

Despite being the second most common alteration in
pLGG, the clinical manifestations of FGFRI alterations
are still not well described. Becker et al., in their descrip-
tion of FGFRI mutations in pilocytic astrocytoma, noted
that mutated tumors had a worse prognosis than their
wild-type counterparts [11]. Whether this worsened out-
come is due to the alteration itself or the propensity for
FGFRI mutated tumors to arise in the midline is un-
known. Importantly, FGFRI mutations often contain
additional alterations, most frequently a second event in
FGFRI resulting in an FGFR1 “dual hit” [97, 229]. In
addition, co-occurring alterations in BRAF, KRAS, NFI,
PTPNI11 and H3F3A have also been reported [97, 171,
187, 229]. Except for H3F3A, whether these additional
alterations impact patient prognosis is yet to be estab-
lished. However, the propensity for FGFRI mutations
(but not TKD duplication or FGFRI-TACCI) to co-
occur with additional alterations is interesting and may
provide insight into the underlying pathogenesis of these
tumors.

CRAF Fusions

Fusions involving CRAF (RAFI), a human homolog of
the v-raf gene implicated in cell proliferation and sur-
vival, are infrequently identified in pLGG, most com-
monly in pilocytic astrocytoma. These include QKI-
RAFI [131, 229], FYCO-RAFI [229], TRIM33-RAFI [43],
SRGAP3-RAFI [98, 99], and ATG7-RAFI [95, 96] among
others. As with non-canonical BRAF fusions, CRAF fu-
sions have been shown to up-regulate the RAS/MAPK
pathway [93, 98, 99]. Due to the rarity of CRAF fusions,
their clinical implications are unclear.

NTRK Fusions

The neurotrophic tyrosine receptor kinase (NTRK) fam-
ily of genes play key roles in CNS development [75, 213,
219] and has long been implicated in a variety of cancers
[192, 213]. NTRK fusions have been identified in various
histological subtypes of pLGG, albeit at very low fre-
quencies. These alterations include SLMAP-NTRK2,
TPM3-NTRK1, ETV6-NTRK3 and RBPMS-NTRK3 [97,
171, 215, 229]. All these fusions are predicted to drive
tumorigenesis via aberrant dimerization of the NTRK
kinase domain, resulting in constitutive downstream ac-
tivation that, at least in part, impacts both the RAS/
MAPK and PI3BK/AKT/mTOR pathways [104, 108, 148].
These results have led to several clinical trials using tar-
geted agents against NTRK (discussed below).

KRAS Mutations
A small subset of non-BRAF mutated pLGG harbor mu-
tations in KRAS, an upstream molecule in the RAS/
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MAPK pathway (Fig. 2). Reports on the frequency of
KRAS mutations in pLGG range from 1-5% and primar-
ily arise in pilocytic astrocytoma [94, 95, 97, 164, 229].
Most frequently, these are p.G12D or p.Q61H/K, al-
though one report noted both novel and dual KRAS mu-
tations within 2 patients [97]. Importantly, KRAS
mutations are also seen in high grade gliomas and there-
fore cannot be used as a diagnostic marker for pLGG.
Given the success of inhibiting downstream effectors of
KRAS mutations in other cancer types [74], identifying
these mutations in pLGG may offer access to targeted
treatment approaches.

PTPN11 Mutations

PTPNI11 (or SHP-2) is a tyrosine phosphatase adaptor
protein within the RAS/MAPK pathway known to cause
Noonan syndrome [182]. With regards to pLGG, specif-
ically pilocytic astrocytoma, PTPNII alterations have
been reported in approximately 2% of cases [95, 97].
Interestingly, in these studies 82% of PTPNII-mutant
cases also harbored alterations in FGFRI1, suggesting that
the two are biologically linked. In the original report de-
fining the mutation, the authors noted that PTPNI11
over-expression alone did not significantly activate the
RAS/MAPK pathway, but did when in the presence of
FGFRI mutations [97]. The authors suggested that
PTPNI1 alone was insufficient to promote transform-
ation, but instead played a modifying role in FGFRI-mu-
tant pLGG. Future work in GBM proposed that PTPN11
is essential for maintaining a glioma stem cell population
during transformation [180] and for activating PI3K/
AKT/mTOR signalling [129]. This suggests that mTOR
inhibitors may be more effective than RAS/MAPK inhib-
itors in pLGG harboring these alterations.

ALK Fusions

The anaplastic lymphoma kinase (ALK) gene is thought
to play a key role in the development and function of
the nervous system and chromosomal alterations and
gain of function mutations in it have been reported in a
plethora of pediatric cancers [29, 30, 106, 137, 220].
These alterations are most commonly fusion events that
result in ectopic expression of the ALK fusion protein
[6]. This results in up-regulation of the RAS/MAPK and
PI3K/AKT/mTOR pathways [73, 143]. Despite the fre-
quency of ALK alterations in pediatric cancer, reports of
its presence in glioma are rare and often exist in isolated
case reports [1, 147, 152]. The most frequently reported
alterations are CCDC88A-ALK and PPPICB-ALK, both
resultant fusions from a larger chromothripsis event [1,
73, 147, 152]. Recently, ALK alterations were shown to
form a unique clinical subgroup of infantile glioma that
require would likely benefit from a refined treatment ap-
proach [73].

Page 8 of 22

ROS1 Fusions

ROS1 is an orphan tyrosine receptor with no known lig-
and nor definitive function despite speculation for a role
in cell proliferation and differentiation. In pLGG,
GOPC-ROS1 is the result of an intrachromosomal dele-
tion that results in a constitutively active kinase fusion
product sufficient to promote neoplastic transformation
both in vitro and in vivo [26, 40]. Although GOPC-ROS1
represents the most common ROSI alteration in gli-
omas, CEP85L-ROS1, ZCCHC8-ROSI, and KLCI-ROSI
have also been reported [33, 40, 146]. The use of tar-
geted agents against ROSI in lung cancers has shown
dramatic clinical efficacy [54, 198], which has resulted in
interest regarding their use in glioma.

MAP2K1 Alterations

Alterations including p.Q56P and small in-frame dele-
tions in MAP2KI were frequent in a small cohort of
multinodular and vacuolating neuronal tumors (MVNT)
[163]. Within pLGG, this alteration appears to be
enriched for this histological subtype, as follow-up work
looking into the molecular landscape of ganglioglioma
did not identify any further MAP2KI alterations [164].
However, MAP2K1 is altered in other non-pLGG tumors
including lung and colorectal cancers and thus, as with
KRAS, is not specific to these entities. These alterations
in other malignancies have shown up-regulation of the
RAS/MAPK pathway and may have a similar mechanism
in MVNT [18, 23, 156].

Other Rare RAS/MAPK Alterations

Recurrent alterations involving FGFR2/3 (rather than
the more frequent FGFRI) have been identified in a
recently defined tumor type, PLNTY, which carries a
good prognosis [88]. These occur exclusively as fusion
events, most commonly as FGFR2-KIAA1598 and
FGFR2-CTNNA3 but also rarely as FGFR3-TACC3. In
contrast to FGFRI-TACCI, FGFR3-TACC3 is ex-
tremely rare in pLGG, but arises in ~3% of IDH1/2
wild-type adult GBM. Therefore, paying close atten-
tion to the histologic features is important for tumors
harboring this fusion [45, 152].

PDGFRa mutations have been reported in low grade
glioneuronal tumors of the septum pellucidum [204],
despite more typically being associated with HGG in the
context of other mutations [109, 193, 207, 226, 227].
The clinical implications of these rare alterations are not
yet fully understood.

Non-RAS/MAPK Related Alterations in pLGG

The degree of molecular data converging on the RAS/
MAPK pathway has justifiably led to speculation that
pLGG is a “one-pathway” disease [34, 96, 149, 229].
However, despite this, several alterations with
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seemingly no direct impact on RAS/MAPK signalling
have also been described. It may be that these aberra-
tion do, in fact, impact this pathway via mechanisms
not yet discovered. We discuss these non-RAS/MAPK
alterations below.

MYB alterations

Myb proto-oncogene protein (c-MYB) is a member of
the myeloblastosis family of transcription factors
named after the avian myeloblastosis virus gene (v-
Myb) which causes myeloid leukemia in chickens. It
plays an important role in the control of proliferation
and differentiation of hematopoietic and other pro-
genitor cells and has well described proto-oncogenic
functions in both human leukemia and solid tumors
where it is thought that super-enhancers to ¢-MYB,
as a consequence of chromosomal translocation, cause
overexpression of ¢c-MYB [160, 230]. MYB’s involve-
ment in pLGG was first described in 2010 by Tate-
vossian et al. who identified MYB amplification in 2
of 14 diffuse astrocytomas and a focal deletion of the
terminal region of MYB in 1 of 2 angiocentric gli-
omas [212]. The authors concluded that 60% of dif-
fuse astrocytomas displayed MYB up-regulation at the
protein level, but were unable to identify a unifying
genetic event responsible for the observation. This
finding was later confirmed, when 22% (8/36) of dif-
fuse cerebral gliomas, including diffuse astrocytoma
and angiocentric glioma, were shown to have a MYB
3’ truncating fusion or, less commonly, amplification
resulting in elevated expression at the protein level
[229]. More recently, Bandopadhayay et. al. published
that 10% (16/172) of their pLGG cohort contained
MYB alterations, most commonly as MYB-QKI fu-
sions, including 19/19 (discovery and validation co-
horts) angiocentric gliomas [8]. This fusion was
shown to likely function via a tripartite mechanism of
MYB protein activation, MYB overexpression and the
loss-of-function of QKI [8]. Work investigating the
genetics of uncommon low-grade neuroepithelial tu-
mors showed that 87% and 41% of angiocentric gli-
oma and diffuse astrocytoma, respectively, harbored
MYB alterations [171]. MYB-ESR1, MYB-PCDHGAI,
MYB-LOCI105378099, MYB-MMPI6, MYB-
LOC154902, and MYB-MAML?2 in addition to MYB-
QKI have also been identified [31, 171, 229]. Import-
antly, MYB alterations are histologically restricted to
angiocentric and diffuse gliomas.

MYBL1 alterations

MYBL1 (MYB Proto-Oncogene Like 1) is a closely re-
lated family member of MYB, and is thought to likewise
act as a transcriptional regulator critical for prolifera-
tion and differentiation. Although commonly grouped
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together due to their overlapping biological function,
much less is known about MYBLI compared to
MYB-driven tumors. Originally described in Rambkis-
soon et. al. in 28% (5/18) of diffuse astrocytomas,
these MYBL1-driven tumors showed a partial duplica-
tion with truncation of its C-terminal regulatory
[174]. The common breakpoint immediately preceding
the C-terminal regulatory domain in these cases sug-
gest the potential formation of a functional, truncated
gene product. However, the concise downstream func-
tional consequence of this event remains to be fully
elucidated [174]. More recent reports of MYBLI alter-
ations in pLGG suggest MYBLI alterations may be
even rarer, being found in 2/17 (12%) [171], 7/50
(14%) [8], and 1/17 (6%) [229] diffuse astrocytomas.
No other histological diagnoses have been reported to
harbor MYBLI alterations.

MYB and MYBLI alterations were originally described
in diffuse gliomas of childhood. They are more likely
to arise in young children (median age 5 years) and
are significantly enriched for the cerebral hemi-
spheres, although infrequently they occurred in the
diencephalon or brainstem [31, 25, 38]. A recent
single-centre pediatric study showed a 10-year OS
and PFS of 90% and 95%, respectively, suggesting that
these lesions are indolent [31]. These alterations have
also been described in the adult age group where they
represented ~50% of so-called isomorphic diffuse gli-
oma (a subtype of IDHI wild-type, BRAF p.V600OE
negative diffuse astrocytoma) in both children and
adults [223]. These tumors, despite their diffuse astro-
cytoma morphological features, had a good prognosis.
When clustered on t-SNE via methylation analysis,
both MYB and MYBLI tumors cluster together, and
the authors conclude that they reflect a single tumor
entity [31]. However, this hypothesis merits further
investigation as more of these rare cases, in particular
those harboring MYBLI alterations, are reported.

IDH1 Mutations

Mutations in IDHI are present in ~70% of grade II,
grade III, and secondary GBM in adults, most frequently
at position p.R132 [7, 15, 77, 228]. Despite their fre-
quency in adults, IDHI mutations in pediatric glioma
are rare, with reports ranging from 0-17% of cases [7,
41, 77, 169, 228]. As with adult tumors, the IDHI muta-
tion is usually in the context of either 1p/19q co-
deletion or is associated with 7P53 and ATRX mutations
and as such, likely represent the lower end of the age
spectrum of adult-type IDH-mutant glioma [103, 130].
There is a significant correlation between IDHI1 alter-
ations and patient age. In one report, /[DHI mutations
were identified in 5% of pediatric gliomas which collect-
ively had a median age of 16 [41]. Likewise, a report
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from the Children’s Oncology Group noted a 16% inci-
dence of IDHI mutations, all of which occurred in pa-
tients over the age of 14 [169]. In adults, IDHI
mutations are associated with a better prognosis and re-
sponse to chemotherapy as compared to IDH1/2 wild-
type glioma [76, 86, 140, 151, 188]. While the clinical
impact of IDHI mutations in children is far less under-
stood, it is likely that they will not behave in the same
indolent way as most other pLGG over the long term. It
is plausible that these tumors are in fact adult malignan-
cies that have been identified early. As such, these tu-
mors should be more closely followed than true pLGG
[92].

H3F3A Mutations

Mutations in histone variant H3F3A (H3.3) were first
described in pediatric high grade glioma, specifically dif-
fuse intrinsic pontine glioma (DIPG), where they are
present in approximately 65% of tumors [109, 134, 193,
207, 226, 227]. H3.3 p.K27M is exclusively observed in
tumors arising in the midline, including the pons, di-
encephalon/thalamus and spinal cord [66, 109, 134, 193,
207, 226, 227]. Although more frequent in HGG, H3.3
p-K27M has been reported in pLGG including pilocytic
astrocytoma [82, 153], ganglioglioma [102, 112, 158] and
diffuse astrocytoma [187, 205]. In one series of pediatric
thalamic glioma, H3.3 p.K27M was noted in 12% of low
grade cases [187]. Interestingly, H3.3 p.K27M has been
shown to co-occur with additional hotspot mutations,
including BRAF p.V600E, FGFR1 p.N546K or p.K656E,
and NFI mutations [102, 112, 158, 187]. Patients with
H3.3 p.K27M pLGG have the potential to live longer
than patients with H3.3 p.K27M glioma with high grade
histologic features. Indeed, there are reports of survival
of up to 10 years post-surgery in rare cases [82, 102,
112, 153 158], although most patients succumb to their
disease within 1-3 years. In this regard, despite their
comparatively longer survival, these tumors tend to
mimic the clinical impact of H3.3 p.K27M in HGG in
that they invariably progress and cause death, starkly
contrasting the excellent survival of non-H3.3 p.K27M
mutant pLGG as described above.

Secondary Alterations in pLGG

CDKN2A Deletion

Homozygous and hemizygous losses involving 9p21 are
frequent in adult infiltrating glioma and GBM [13, 150,
163]. One of the consequences of this deletion is the loss
of the tumor suppressor CDKN2A, which endogenously
functions as a G1 cell-cycle regulator [125, 184]. Homo-
zygous deletion of CDKN2A is also observed in pLGG,
albeit at a lower frequency than in adult glioma [10, 161,
162, 165, 170]. Reports suggest that CDKN2A loss
ranges in frequency from 6-20% in pLGG, with
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significant enrichment in pleomorphic xanthoastrocy-
toma [17, 51, 84, 190]. Likewise, CDKN2A deletion fre-
quently co-occurs with BRAF p.V600OE, suggesting that
it likely acts as a second molecular hit, promoting es-
cape from cell cycle regulation [17, 84, 85, 91, 173,
190]. Tumors harboring both BRAF p.V60OE and
CDKN2A deletion comprise a distinct clinical subtype
of pLGG prone to transformation into secondary HGG
[142]. This is in line with reports showing that co-
occurrence of CDKN2A deletion with BRAF p.V60OE is
associated with escape from oncogene-induced senes-
cence [91, 173] and with having a worse OS and PFS
[85]. Interestingly, several reports have also shown that
pediatric grade I gliomas harboring CDKN2A loss, des-
pite their rarity, have a more aggressive clinical course
consistent with that of a higher histological grade [173,
190] and co-occurrence of CDKN2A deletion with
BRAF fusions has been described in anaplastic astrocy-
toma with piloid features [178]. As such, pLGG with
CDKN2A deletions, especially in the context of BRAF
p-V60OE or with possible high grade histologic features,
should be considered as high risk tumors that warrant
close clinical follow-up.

Molecular Tests and Platforms for profiling pLGG
Currently, a wide array of clinically-certified laboratory
methods are used to molecularly profile pLGG. How-
ever, no "gold standard" exists for testing the array of
potential molecular events and various strategies may be
used depending on tissue quality/quantity and budget.
As detailed above, one should strive to have tools which
can identify SNVs and gene fusions. Simple and robust
tests which can be used to detect common alterations
such as BRAF fusions and BRAF p.V60OE allow molecu-
lar characterization of almost two thirds of pLGG.

Below, we discuss some of the common testing strat-
egies used to molecularly profile pLGG and include their
tissue requirements, cost, turn-around time, and target-
specific applicability (Table 2).

Immunohistochemistry

Immunohistochemistry (IHC) is a simple and robust test
which can identify specific alterations in most laboratories.
IHC is capable of detecting protein specific expression in-
dicative of the tumor's underlying mutational status in a
timely, cost-effective manner while requiring very little tis-
sue in the process. With respect to pLGG, IHC has been
faithfully utilized in the detection of BRAF p.V60OE [21],
H3.3 p.K27M [221] and IDH1 p.R132H [22] and can be
used on formalin-fixed-paraffin-embedded (FFPE) tissue.
However, this approach is limited to those alterations with
available antibodies.
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Fluorescent in situ Hybridization

Fluorescent in situ hybridization (FISH) allows for
visualization of both gene fusions and copy number
events at a single cell resolution. In pLGG, FISH has
been used in the identification of BRAF [214], FGFRI
[179], ALK/ROSI/NTRK1/2/3 fusions [73], and MYB/
MYBLI alterations [174, 212]. It can also be used for
identifying co-occurring CDKNZ2A deletions. FISH is
widely available and can be used on FFPE material but is
relatively labor-intensive, and can only test for a single
alteration at a time.

Droplet Digital PCR

Point mutations can be also detected using polymerase
chain reaction (PCR) techniques. If available, the advan-
tage of droplet-digital PCR (ddPCR) is its ability to faith-
fully detect mutations at very low variant allele
frequencies related to low quality or highly diffuse input
material. In addition, ddPCR's ability to do high through-
put testing makes the test affordable when run at capacity.
In this process, single fragments of DNA are partitioned
into oil-based droplets and amplified using standard Taq-
Man probes designed against the desired target [172]. As
each individual droplet is devoid of competition, each
DNA fragment is amplified, allowing for unparalleled
sensitivity. ddPCR can identify not only point mutations
such as BRAF p.V60OE [123], H3.3 p.K27M [187], IDH1
p.R132H [187], and FGFR1 p.N546K and p.K656E [58]
but also CDKN2A deletions [123], KIAA1549-BRAF [5],
and FGFRI1 TKD-duplication [58] based on copy number
comparisons. This technique is very robust on degraded
DNA, including from FFPE material, and requires min-
imal technical hands-on time. However, it is difficult to
multiplex and requires access to expensive equipment.

NanoString nCounter

The NanoString nCounter system is a hydridization
based platform capable of detecting fusion transcripts in
a multiplexed fashion [186]. NanoString panels can be
used to screen for the common fusions such as those in-
volving BRAF (including both the canonical KIAA1549-
BRAF and the non-canonical fusions described above)
and FGFRI-TACCI [186] as well as for rarer fusions in-
cluding those involving ALK, ROSI, NTRK, and MET
[73]. This technology is robust on FFPE material, re-
quires minimal technical hands-on time and bioinfor-
matic analysis is relatively simple. However, input
requirements are relatively high (200-500ng of RNA),
the fusion partner and exact breakpoint must be known
and it requires access to expensive equipment.

SNP Array
In cases where no specific alterations can be found using
the gene specific tools, or when copy number alterations
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have a role in tumor management, genome-wide SNP
arrays can be used. SNP arrays are a probe-based mo-
lecular profiling technique optimized for the detection of
copy number variants. Their use in pLGG molecular
profiling includes the identification of BRAF and FGFR
fusions, MYB and MYBLI alterations and CDKN2A de-
letions. SNP arrays are robust with FFPE material, but
require expensive reagents, long technical hands-on time
and batching of samples as well as a moderate amount
of input material (100-200ng of DNA) and access to ex-
pensive equipment.

Next generation sequencing panels

In recent years, the use of next-generation sequencing
(NGS) platforms for the molecular characterization of
solid tumors has gained significant popularity [113, 175,
209]. These platforms range from approximately 300-
500 gene targets (or more) and often include most of
those altered in pLGG. Sequencing based approaches
have the benefit of simultaneous detection of most clin-
ically relevant alterations in a single test from which
diagnostic, prognostic and therapy decisions can be
made. However, tissue quality requirements, which are
generally higher as compared to the other technologies,
technical hands-on time and downstream analysis are
more complicated and time-consuming leading to longer
turn-around-times and cost. Access to expensive equip-
ment is also required, all of which limit the use of these
approaches globally. Nevertheless, in the cases where the
tools above cannot identify the pLGG molecular driver,
NGS approaches are highly advantageous.

Methylation Profiling

DNA methylation profiling is another tool which can aid
in the diagnosis of tumors arising in the CNS [20]. This
method is particularly useful in aiding the diagnosis of
difficult tumor entities and is robust on FFPE material.
In addition, current arrays can detect copy number alter-
ations, albeit at a lower resolution than SNP arrays.
However, the utility of the methylation classifier may be
less robust in pLGG, possibly due to frequent inclusion
of normal tissue in these tumors [20]. Furthermore,
methylation profiling remains expensive, is subject to
batch effects, and must be run in sets of 8. Further, the
utility of methylation profiling as it pertains to tumor
diagnosis requires further investigation.

Molecular pLGG diagnostic algorithm

Given the array of molecular alterations and their overlap
amongst different tumor histologies, devising a simple
testing recommendation for pLGG can be difficult. Ultim-
ately, as proposed by Miklja et. al. [141], there are two pri-
mary approaches to the problem (i) sequential testing of
specific alterations in a tier-based approach or (ii) upfront
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NGS panels optimized for pLGG. The latter may be used
in centers with access to this technology and for whom
cost is not an issue. For other centers the use of a sequen-
tial testing strategy is largely supported by the fact that the
vast majority of pLGG harbor a single molecular driver
within a subset of recurrently altered genes. These events
primarily occur as either gene fusions or mutations, but
almost never both. Rarely, exceptions arise where multiple
mutations, either within the same gene or in other trad-
itional pLGG targets, arise. These are almost exclusively
observed with mutations and not gene fusions. The crux
of this strategy lies in its ability to accurately identify a
molecular driver prior to the number of tests conducted
exceeding the cost and turn-around-time of an NGS based
approach. A possible testing strategy highlighting the most
probable molecular alterations present based on the
tumor's clinical features is included in Fig. 4.

Targeted Molecular Therapies for pLGG

BRAF Inhibitors

First generation BRAF inhibitors including dabrafenib
and vemurafenib have shown excellent results in melan-
oma patients harboring BRAF p.V60OE and are now be-
ing investigated for their utility in pLGG [79, 206]. A
series of case reports utilizing these agents in a single
agent approach showed excellent results with most
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reporting a complete response [2, 24, 42, 121, 185, 203].
These findings were recently confirmed in a larger co-
hort of BRAF p.V60OE tumors, in which either of these
BRAF inhibitors induced significant cytoreduction and
prolonged survival in patients [123]. These results led to
a multi-institute phase I clinical trial, where initial find-
ings using dabrafenib reported an impressive overall re-
sponse rate of 41% [110] A follow-up trial optimizing
the dosing safety and tolerability is currently underway
(NCT01677741). Despite their efficacy in BRAF p.V600E
tumors, first generation BRAF inhibitors result in para-
doxical activation of RAS/MAPK signalling when used
in KIAA1549-BRAF or BRAF wild-type tumors [201].
This was the case in a trial of sorafenib, which caused
accelerated tumor growth and resulted in the early ter-
mination of the trial [105]. To rectify this issue, second
generation "paradox-breaker" agents were designed to
inhibit BRAF without causing paradoxical RAS/MAPK
activation [217]. Of note, CRAF fused pLGG were unre-
sponsive to both first and second generation BRAF in-
hibitors [93]. This was attributed to the robust protein-
protein interactions mediated by the CRAF fusion part-
ners [93]. This highlights the necessity of careful mo-
lecular characterization of pLGG prior to making
treatment decisions, and emphasizes the risk of conduct-
ing trials without proper molecular characterization.
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Fig. 4. Molecular testing decision tree for pediatric low-grade glioma. *The frequency with which tumors harbor an FGFRT mutation and
additional mutations justifies continued testing regardless of status. AG: angiocentric glioma, DNET: dysembryoplastic neuroepithelial tumour,
GNT: glioneuronal tumor, ODG: oligodendroglioma, PA: pilocytic astrocytoma, GG: ganglioglioma, PXA: pleomorphic xanthoastrocytoma, DA:
diffuse astrocytoma
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MEK Inhibitors

For pLGG that are not suitable for type I BRAF inhibi-
tors (NF1-pLGG, KIAA1549-BRAF fused, etc.), MEK in-
hibition has emerged as a promising therapeutic
strategy. Currently, four MEK inhibitors including selu-
metinib [9, 56)], trametinib (NCT03363217), cobimetinib
(NCT02639546), and binimetinib (NCT02285439) are at
various stages of clinical testing. For selumetinib, both
phase I and II trials have been completed [9, 56]. The
phase I study focussing on NF1-associated and sporadic
refractory or progressive pLGG showed that 32/38 pa-
tients exhibited either stability or reductions in tumor
size [9]. Similar results were seen in a Phase II study,
where use of selumetinib in recurrent pLGG boasted im-
pressive results, with 40% of NF1 patients achieving par-
tial response and only 1 patient progressing while on
treatment [56]. Given these positive results, efforts to
evaluate the use of selumetinib upfront in newly diag-
nosed patients both as a single agent or in combinations
are under way. The trial of trametinib involving 6 pa-
tients resulted in 2 partial and 3 minor responses, while
1 patient had progressive disease [115].

FGFR1 Inhibitors

Due to its functional importance and frequent implica-
tions in cancer, multiple small molecular inhibitors of
FGFR have been developed, some of which are in clinical
trials for an array of malignancies. These include
AZD4547 (NCT02824133) for treatment of malignant
glioma harboring FGFR-TACC fusions [65] and several
others previously reviewed [36]. Results from these trials
will inevitably influence the applicability of these agents
in pediatric glioma.

ALK/ROS1/NTRK Inhibitors

Alterations in ALK, ROSI and NTRK are relatively rare
in pLGG. Conveniently, alterations in these genes are
common in adult malignancies including lung and
colorectal cancer and as such, targeted agents with
federal approval have already been developed and
tested. These include Crizotinib (NCT00939770) [144],
ceritinib (NCTO02336451) [111], and cabozantinib
(NCT00704288) [224], as well as many investigational
agents, such as brigatinib (ALK/ROS1) [39], entrectinib
(ROS1/TRK) [128], and larotrectinib (TRK) [83, 194],
the latter of which was recently approved in the treat-
ment of TRK-altered cancers (NCT02122913) [83]. In
pediatric glioma specifically, both entrectinib and laro-
trectinib have shown potent anti-tumor effects
(NCT02637687, NCT02576431) [52, 53, 120]. These
results have led to a current phase I/Ib study being
conducted in pediatrics to evaluate Entrectinib in pri-
mary CNS tumors (NCT02650401).
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The Future of pLGG Classification
The importance of molecular testing in tumor diagnos-
tics is increasingly recognised and became formalised for
brain tumors in the most recent WHO classification
[132]. As we gain a better understanding of the molecu-
lar underpinnings of pLGG, it is becoming evident that,
while certain histologies may be enriched for particular
molecular events (and vice versa), they are not exclu-
sively associated with a particular event. Furthermore,
while classic morphologies exist for the entities encom-
passed within the umbrella of pLGG, there remain cases
with overlapping features between histologic categories,
as was discussed above. Importantly, whether a particu-
lar molecular event carries the same prognostic signifi-
cance across different pLGG entities is currently unclear.
Given this, a layered diagnostic approach is recom-
mended where both the histologic classification and mo-
lecular findings are reported in an integrated diagnosis
[133]. Most importantly, pLGG need to be distinguished
from their adult-type counterparts as both clinical man-
agement and long term outcome are drastically different.
A comprehensive risk based classification of pLGG lies
in an integrated model, utilizing clinical, imaging and
molecular information to concisely categorize tumors
based on their potential clinical risk (Fig. 5) [95, 97, 123,
171, 229, unpublished data]. The scheme we propose
here attempts to incorporate these factors into one tool.
For example, a pLGG with typically benign histology, a
KIAA1549-BRAF fusion, and arising in a child between
3-12 years would typically be viewed as low risk and a
"watch and wait" strategy may be employed, followed by
less aggressive therapies if the tumor were to progress.
In contrast, a tumor in an unfavorable location or highly
disseminated with high risk molecular features will re-
quire close clinical follow-up and a more aggressive
therapeutic approach (Fig. 5). This schematic approach
would also allow for amendments incorporating adjunct
strategies such as the methylation classifier [20] or other
novel molecular targets upon their discovery.

Conclusion

The era of precision medicine for pLGG has arrived.
Molecular stratification of pLGG resulting in significant
clinical implications is currently available and has been
seen in trials for specific inhibitors such as BRAF
p-V600OE- and MEK-inhibitors. The expected availability
of FGFR-targeted agents, as well as other tyrosine kinase
inhibitors for rare fusions, makes precision diagnostics
key to the management of these patients. Indeed, the
current National Cancer Institute—Children’s Oncology
Group Pediatric MATCH trial (NCT03155620) aims to
match actionable mutations to 9 investigational therap-
ies, providing a glimpse into the future of pLGG treat-
ment. In this context it is important to be aware of
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Fig. 5. Risk association for clinical and molecular features of pediatric low-grade glioma. Associated points are to be totaled for tumor location,
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which methods are available to be used that are not reli-
ant on expensive NGS-based technologies, and here we
provide a testing pipeline to aid in testing decisions.
Importantly, molecular stratification is only one factor
influencing the behavior of pLGG. Other factors such as
age, tumor location, and histopathology are required to
inform a comprehensive approach to prognostication
and treatment of pLGG. We therefore propose a pLGG
risk classification schema that utilizes the breadth of
clinical and molecular information available to best

equip clinicians as we transition to this new era of pLGG
classification and treatment.
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