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Abstract

A hexanucleotide repeat expansion in a noncoding region of C9orf72 is the most common genetic cause of
amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Reduction of select or total C9orf72
transcript and protein levels is observed in postmortem C9-ALS/FTD tissue, and loss of C9orf72 orthologues in
zebrafish and C. elegans results in motor deficits. However, how the reduction in C9orf72 in ALS and FTD might
contribute to the disease process remains poorly understood. It has been shown that C9orf72 interacts and forms a
complex with SMCR8 and WDR41, acting as a guanine exchange factor for Rab GTPases. Given the known
synaptosomal compartmentalization of C9orf72-interacting Rab GTPases, we hypothesized that C9orf72 localization
to synaptosomes would be required for the regulation of Rab GTPases and receptor trafficking. This study
combined synaptosomal and post-synaptic density preparations together with a knockout-confirmed monoclonal
antibody for C9orf72 to assess the localization and role of C9orf72 in the synaptosomes of mouse forebrains. Here,
we found C9orf72 to be localized to both the pre- and post-synaptic compartment, as confirmed by both post-
synaptic immunoprecipitation and immunofluorescence labelling. In C9orf72 knockout (C9-KO) mice, we
demonstrated that pre-synaptic Rab3a, Rab5, and Rab11 protein levels remained stable compared with wild-type
littermates (C9-WT). Strikingly, post-synaptic preparations from C9-KO mouse forebrains demonstrated a complete
loss of Smcr8 protein levels, together with a significant downregulation of Rab39b and a concomitant upregulation
of GluR1 compared with C9-WT mice. We confirmed the localization of Rab39b downregulation and GluR1
upregulation to the dorsal hippocampus of C9-KO mice by immunofluorescence. These results indicate that C9orf72
is essential for the regulation of post-synaptic receptor levels, and implicates loss of C9orf72 in contributing to
synaptic dysfunction and related excitotoxicity in ALS and FTD.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a fatal adult-
onset neurodegenerative disease primarily affecting
motor neurons of the motor cortex, brain stem, and
spinal cord. With no effective treatment, disease
course is typically rapid, resulting in complete paralysis
and death within 2–5 years after diagnosis. Hexanu-
cleotide (G4C2) repeat expansions within the first in-
tron of C9orf72 are the most common known genetic
cause of both ALS and frontotemporal dementia (FTD)

[14, 40]. Initial reports on C9orf72 expansions indi-
cated that a length of > 30 was pathogenic; however,
there have been several cases where 30–70 repeats do
not result in disease, indicating there is no discernible
pathological cut-off [17, 35, 59, 60]. As a result, how
the expanded G4C2 repeats in C9orf72 cause neurode-
generation in ALS and FTD remains largely uncertain.
Three potential pathomechanisms have been proposed to
result from the repeat expansions [21, 30, 52]: (1) RNA-
mediated toxicity through sequestration of RNA-binding
proteins in nuclear repeat RNA foci; (2) accumulation
of five dipeptide repeat (DPR) proteins, glycine-alanine
(GA), glycine-arginine (GR), proline-alanine (PA), proline-
arginine (PR), and glycine-proline (GP), by repeat-associated
non-ATG (RAN) translation; and (3) loss of function
through C9orf72 haploinsufficiency.
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Evidence from human tissues, and cell and animal
models has demonstrated that RNA foci are generated in
neural cells and the G4C2 repeat structures sequester
RNA-binding proteins [1, 14, 15, 17, 37, 50, 63]. In
addition, it has been shown that GA, GR, PA, PR, and GP
differentially accumulate across different brain regions in
ALS/FTD patients [2, 3, 18, 38, 39, 42, 54]. However, evi-
dence has indicated that the distribution of RNA foci and
DPRs only show a minor relationship with the severity of
neurodegeneration across brain regions, and DPR inclu-
sions in disease are rarely observed in motor neurons at
autopsy [12, 13, 32, 33]. Indeed, a recent discovery dem-
onstrated that somatic expansion of the G4C2 repeats
does not occur in ALS spinal cord tissues [41]. Interest-
ingly, one group reported an ALS patient presenting with
behavioural variant FTD who carried a loss-of-function
splice site mutation (c.601 -2A >G) that created a prema-
ture stop codon (p.I201fsX235), resulting in reduced
C9orf72 mRNA levels in leukocytes relative to control
cases [31]. We recently reported a 90-year-old individual
carrying 70 G4C2 repeats who was neurologically asymp-
tomatic at autopsy and who had widespread accumulation
of RNA foci and DPRs in the brain, but had increased
C9orf72 protein levels and no TDP-43 pathology [35, 59].
These findings emphasize the importance of assessing the
contribution of C9orf72 protein levels to disease mechan-
ism. To date, reduced expression of select or total C9orf72
transcripts [1, 6, 14, 20] or its protein level [57, 61] in
C9orf72 G4C2 repeat carrier-derived cells or postmortem
tissues from C9-ALS/FTD patients have been widely
reported. In animal models, knockdown or deletion of
C9orf72 orthologues cause motor phenotypes in zebrafish
[9] and C. elegans [53], respectively. However, loss of
C9orf72 in mice does not induce motor neuron deficits,
nor does it produce TDP-43 proteinopathy [24, 27].
Collectively, a full understanding of C9orf72 function is
needed to elucidate its contribution to the disease
mechanism.
Sequence and structure analyses have shown that

C9orf72 shares homology with DENN (differentially
expressed in normal and neoplastic cells) domain pro-
teins [23, 29, 66], which are Rab GTPase guanine
exchange factors (GEFs) [34, 65]. C9orf72 forms a
complex with Smcr8 and Wdr41 and can act as a GEF
for Rab8 and Rab39b [11, 44, 62, 64]. Given that many
Rabs show a synaptosomal distribution [26] and that
two studies have shown C9orf72 enrichment at synap-
ses [4, 16], we hypothesized that the loss of C9orf72
would lead to alterations in Rab family interactors and
glutamatergic receptor levels in synaptosomes. To
further understand the biochemical distribution of
C9orf72 in the brain, we combined synaptosomal [51]
and post-synaptic density preparations [8, 10] with a
knockout-confirmed monoclonal antibody for C9orf72,

which shows both biochemical and immunohistochem-
ical specificity for C9orf72 [28], to assess the distribu-
tion of C9orf72 at synaptosomes. Here, we have
demonstrated that the mouse ortholog for C9orf72
(31100432021Rik) is localized to both the pre- and
post-synapses and is essential for stable Rab39b and
GluR1 levels in post-synaptic densities.

Materials and methods
Mouse breeding
All animal protocols were conducted in accordance with
the Canadian Council on Animal Care and approved by
the University of Toronto Animal Care Committee.
Knockout C9orf72 mice were obtained through a generous
gift from Dr. Don Cleveland (UCSD) and Dr. Clothilde
Lagier-Tourenne (UMass). Breeding and genotyping were
conducted as previously described [24]. Briefly, C9orf72
heterozygous mice (C57BL/6 background) were crossed,
resulting in the production of homozygous C9orf72 KO
(C9-KO) and wild-type (C9-WT) littermates. For all
biochemistry and immunohistochemical experiments, 3-
month old mice were empirically selected.

Post-synaptic density fractionation
The fractionation of intact synaptosomes, followed by
postsynaptic densities (PSDs), was performed as previ-
ously described [8, 51] with some adaptations (Fig. 1a).
For the characterization of the distribution of protein
markers in the PSD fraction of C57BL/6 WT mice, we
used three biological replicates (n = 12 mice per repli-
cate). Mice were euthanized with controlled flow CO2

followed by cervical dislocation. The brains were rapidly
removed from the skull and then the cerebellum and
brainstem from each brain were discarded, leaving dis-
sected forebrains for each mouse. Mouse forebrains were
homogenized with a Dounce homogenizer in ice-cold
homogenization buffer (HB; 320 mM sucrose, 5 mM
HEPES [pH 7.4]) and then centrifuged at 1000×g for 10
min at 4 °C. The resulting pellet was homogenized with
RIPA buffer (150 mM NaCl, 50 mM Tris-HCl [pH 7.4],
1% w/v TX-100, 0.5% w/v sodium deoxycholate, 1 mM
EDTA, 0.1% SDS) and saved as the post-nuclear/debris
fraction (P1). The supernatant (S1) was centrifuged at
13,800×g for 15 min at 4 °C. The supernatant (S2) was
saved as the cytoplasmic fraction and the pellet (P2) was
resuspended in ice-cold HB and then loaded onto a
discontinuous Ficoll gradient (13, 9, 5% w/v) prepared in
HB and centrifuged at 82,500×g for 120 min at 4 °C. In-
tact synaptosomes (SYN) were retrieved at the boundary
between 9 and 13% in the Ficoll gradient and rinsed two
times with HB. The resulting pellet was resuspended in
cold resuspending buffer (RB; 0.32M sucrose, 1 mM
NaHCO3) and then lysed in an equal volume of lysis
buffer 1 (LB1; 1% Triton X-100, 12 mM Tris-HCl [pH
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8.1]). The lysed synaptosomes were end-over-end ro-
tated for 15 min at 4 °C and centrifuged at 32,800×g for
20 min. The supernatant was saved as the pre-synaptic
compartment (S3), whereas the pellet (P3) was resus-
pended in RB, loaded onto a sucrose gradient (2.0 M,
1.5M, 1.0M), and then centrifuged at 201,800×g for 120
min. The crude PSDs were retrieved from the 1.5–2.0M
sucrose interface and resuspended in RB, followed by
treatment with equal parts lysis buffer 2 (LB2; 150 mM
KCl, 1% TX-100). After end-over-end rotation for 15
min at 4 °C, the crude PSD solution was centrifuged at
201,800×g for 4 °C. The supernatant was saved as the
Triton-KCl treated fraction (S4*), whereas the pellet was
resuspended in RIPA buffer and sonicated at < 5 watts
to isolate PSDs (P4*).
To allow for the direct comparison of C9-WT versus

C9-KO mice (n = 2 per sample; n = 4 biological repli-
cates), the sucrose gradient step was omitted after resus-
pension of the P3 fraction, as shown in Fig. 1a. We
implemented this approach since it was empirically
determined that all markers identified in PSDs were
present in semi-pure PSDs. For the C9-WT versus C9-
KO experiments, P3 was treated directly with RB along
with addition of LB2, as described above, followed by
end-over-end rotation for 15 min at 4 °C. Centrifugation
was then performed at 201,800×g for 4 °C, where the

supernatant was saved as the LB2-treated fraction (S4)
and the pellet was resuspended in RIPA buffer and then
sonicated (< 5W) to obtain semi-pure PSDs (P4). Pro-
tein concentrations for each fraction were estimated
using the bicinchoninic acid assay for electrophoretic
loading.

PSD-95 immunoprecipitation
For the immunoprecipitation (IP) experiment, the pro-
cedure for isolating PSDs was performed as described
above for the characterization of protein marker distri-
bution in PSDs (Fig. 1a). We adapted our IP strategy
based on an affinity-based approach in a previous study
[56]. Briefly, Protein A magnetic beads (Surebeads 161–
4023, BioRad) were washed two times with phosphate
buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl, 4.3
mM Na2HPO4, 1.47 mM KH2PO4, pH 7.4). Next, washed
beads were incubated with either polyclonal PSD-95
antibody (ab18258) or rabbit IgG (#2729, Cell Signaling
Technology) at 1:200 dilution in PBS for 1 h at ambient
temperature. Beads with α-PSD-95 or rabbit IgG bound
were then washed with Tris-buffered saline (TBS; 50
mM Trizma base, 150 mM NaCl, pH 7.6) with 0.1%
Tween 20 three times for 5 min. Pre-sonicated P4 frac-
tions were incubated with either PSD-95 antibody-
coated beads or rabbit-IgG-coated beads for 2 h at 4 °C.

Fig. 1 Biochemical distribution of C9orf72 and Rab proteins in the pre- and post-synaptic compartments of wild-type murine forebrains. a
Flowchart for the fractionation of synaptosomes, pre-synapses, and post-synaptic densities (PSDs) used in the current study. S1 = post-nuclear
supernatant; P1 = nucleus and debris; S2 = crude cytoplasm; P2 = crude synaptosomes; SYN = pure synaptosomes; S3 = presynaptic terminals; P3 =
crude PSDs; S4 = Triton X-100-KCl treated P3 supernatant; P4 = semi-pure PSDs; S4* = Triton X-100-KCl treated crude PSD supernatant; P4* = PSDs;
PSD-IP = pure PSDs. b Distribution of markers across synaptic fractions in C57BL/6 mice. Synaptophysin (Syp); Post-Synaptic Density Protein 95
(PSD-95); TAR DNA Binding Protein 43 (TDP-43); Chromosome 9 open reading frame 72 (C9orf72); Smith-Magenis syndrome Chromosomal Region
candidate gene 8 (Smcr8); Ras-related proteins Rab3a, Rab5, Rab11, Rab39b; Glutamate receptor 1 (GluR1); glutamate receptor 2 (GluR2); N-
methyl-D-aspartic acid receptor 1 (NMDAR1)
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Next, beads were collected by magnetic rack and washed
three times for 3 min in TBS with 0.1% Tween 20. Elu-
tion was performed in RIPA buffer with sample buffer
added (3X; 187.5 mM Trizma base, 6% SDS, 30% gly-
cerol, 0.03% bromophenol blue, 15% β-mercaptoethanol,
pH 7.6) with a 5 min incubation at 95 °C.

Gel electrophoresis and immunoblotting
Samples were solubilized in sample buffer (3X) and boiled
at 95 °C for 5min for immunoblotting. All samples were
electrophoresed on 10% (w/v) sodium dodecyl sulphate-
polyacrylamide (SDS-PAGE) gels. Separated proteins were
transferred to polyvinylidene fluoride (PVDF) membranes.
For all immunoblot experiments, membranes were
blocked for 1 h at ambient temperature in blocking buffer
composed of 5% (w/v) skim milk powder in TBS. PVDF
membranes were incubated overnight at 4 °C with primary
antibodies. A complete list of primary antibodies and the
appropriate methodology used is shown in Additional file 1:
Table S1. Membranes were then washed with TBS con-
taining 0.05% Tween 20 and incubated for 1 h at ambient
temperature with the following secondary antibodies
diluted in blocking buffer: either α-mouse horseradish
peroxidase (HRP)-conjugated (NA931, GE Healthcare; 1:
5000), α-rabbit HRP-conjugated (NA934, GE Healthcare,
1:5000), or α-goat HRP-conjugated (sc-2433, Santa Cruz,
1:5000) antibody. Visualization of immunoblot labelling
was achieved using chemiluminescence with the Western
Lighting Plus ECL kit (Perkin Elmer).

Immunoblot image analysis and quantification
Densitometric analysis of immunoblots was performed
using the ImageJ distribution Fiji [43]. Protein levels
were estimated for each lane by calculating the relative
density using an appropriate marker for that fraction
(Synaptohysin [Syp] for SYN and S3; PSD-95 for P4).
Bar plots were used for visualization of relative protein
levels and the statistical analysis comparing C9-WT and
C9-KO mice was performed with Prism (v8.0.2, Graph-
Pad). For this, multiple t-tests were performed, and the
false discovery rate was controlled using the Benjamini,
Krieger, and Yekutieli procedure (Q = 1%).

Immunofluorescence
Mice were anaesthetized with ketamine/xylazine (1mg/g)
by intraperitoneal injection. For C9orf72/PSD-95 staining,
transcardial perfusion was performed with phosphate
buffered saline (PBS; 137mM NaCl, 2.7 mM KCl, 4.3 mM
Na2HPO4, 1.47mM KH2PO4, pH 7.4) followed by 10%
neutral buffered formalin (HT501128, Sigma-Aldrich).
Brains were removed, post-fixed in formalin for exactly
24 h at ambient temperature, then placed in 70%
ethanol for 1 week prior to processing and embedding
in paraffin blocks. Formalin-fixed, paraffin-embedded

mouse tissue blocks from C9-KO (n = 3) and C9-WT
(n = 3) mice were sectioned sagittally at 6 μm and
mounted on positively-charged slides. Deparaffiniza-
tion was performed by placing sections on a 60 °C heat
block for 20 min, in xylene (3 × 5 min), 50:50 xylene:
ethanol, and then through graded ethanol washes (100,
95, 75, 50% w/v) prior to pure water. Heat-induced
antigen retrieval was achieved using Tris-EDTA buffer
(10 mM Trizma base, 1 mM EDTA, 0.1% Tween 20,
pH 9.0) at 110 °C for 15 min in a pressure cooker.
Blocking was performed with 10% donkey serum
(EMD Millipore) and 0.3% TX-100 in TBS for 1 h at
ambient temperature. Primary antibody incubation was
performed overnight at 4 °C for C9orf72 (GTX634482;
Genetex) and either PSD-95 (61–5900, Invitrogen),
Synaptoporin (102,002, Synaptic Systems), or Rab39b
(12162–1-AP, Proteintech) diluted in DAKO Antibody
Diluent (S0809; Agilent). After 3 × 20 min washes in
TBS + 0.1% Tween 20 (TBST), secondary incubation
was performed at ambient temperature with donkey α-
rabbit 488 and donkey α-mouse 594 Alexa Fluor secondary
antibodies (Invitrogen; 1:500) diluted in DAKO Antibody
Diluent. Slides were washed 3 × 20 min in TBST prior
to mounting with ProLong Gold antifade reagent with
4′,6-diamidino-2-phenylindole [DAPI] (P36931; Life
Technologies).
For GluR1 and Rab39b labelling, transcardial perfusion

was performed with ice-cold PBS followed by ice-cold
4% paraformaldehyde (PFA) in PBS. Brains were re-
moved and post-fixed in PFA for 24 h at 4 °C. PFA-fixed
brains were cryo-protected by immersion in PBS with
30% sucrose. 40 μm sagittal sections were cut on a freez-
ing microtome (HM430, Thermo Scientific), placed in
anti-freeze solution (30% glycerol, 30% ethoxyethanol,
40% PBS), and stored at − 20 °C. Sections containing the
dorsal hippocampus were rehydrated in PBS and then
permeablized in PBS containing 0.4% TX-100 for 20
min. Blocking was performed in 10% donkey serum
(EMD Millipore) with 3% BSA in PBS containing 0.4%
TX-100 for 2 h. Primary antibody incubation was per-
formed with polyclonal rabbit α-GluR1 (AB1504; 1:200)
or α-Rab39b (Proteintech; 1:2000) at 4 °C for 48 h. Fol-
lowing three 20min washes with PBS containing 0.1%
TX-100, sections were incubated with donkey α-rabbit
488 Alexa Fluor secondary antibody (Invitrogen; 1:500)
diluted in the same blocking buffer for 2 h at ambient
temperature. After three 20min washes with PBS, sec-
tions were mounted on positively-charged slides and
allowed to completely dry at ambient temperature.
Mounting was then performed with ProLong Gold anti-
fade reagent with DAPI (P36931; Life Technologies).
Micrographs were captured using a Leica DMI6000B
microscope with the Volocity Acquisition Suite (v6.3,
Perkin Elmer).
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Micrograph image analysis and quantification
For all images, deconvolution of low and high magnifica-
tion micrographs was performed with 25 iterations and a
confidence level of 95% per channel using the Volocity
Analysis Suite (v6.3, Perkin Elmer). For GluR1 and
Rab39b, fluorescence intensity in the hippocampus of C9-
WT versus C9-KO mice was calculated from exported im-
ages (n = 3 slices per biological replicate) using Fiji [43].
Qualitative assessment of GluR1 levels indicated increased
immunofluorescence across all hippocampal subfields, so
the entire hippocampal area was outlined in the fluores-
cence intensity measurement. For Rab39b, the intensity
was measured by outlining the mossy fiber area given the
empirically determined distribution in that region alone.
Mean fluorescence intensity in each case was calculated
by subtracting background intensity from raw intensity
and then dividing by the selected hippocampal area. Statis-
tical analyses were performed with Prism (v8.0.2, Graph-
Pad), where the mean fluorescent intensity of GluR1 and
Rab39b in C9-WT versus C9-KO were contrasted using a
paired t-test (p < 0.05).

Results
C9orf72 localizes to both the pre- and post-synapses in
murine forebrains
Given that different Rab proteins show unique localization
to the pre- and post-synaptic compartment [22, 26], we
reasoned that C9orf72 and its interacting partner Smcr8
[11, 62, 64] would be present in post-synaptic densities.
To assess this, we performed biochemical fractionation of
the pre- and post-synapses in mouse forebrains as
described previously [8, 51] with some modifications
(Fig. 1a). With this approach, we showed enrichment
for the pre-synaptic vesicular marker synaptophysin
(Syp) in synaptosomes (SYN) and the pre-synaptic
compartment (S3), whereas Syp was absent in the
post-synaptic fraction (P4*) (Fig. 1b). The established
post-synaptic density marker PSD-95 was enriched in
the expected fractions (SYN, P3, and P4*) and depleted
in the pre-synapses (S3) (Fig. 1b). In addition, post-
synaptic receptors GluR1, GluR2, and NMDAR1 were
also enriched in P4* (Fig. 1b). We also detected pre-
and post-synaptic TDP-43 in S3 and P4* (Fig. 1b) and
found that Rab3a, Rab5, and Rab11 were enriched in
the S3 fraction, but depleted in P4* (Fig. 1b). However,
Rab39b was found in both the pre- and post-synaptic
compartments (Fig. 1b), confirming the differential
synaptic distribution of Rab family proteins in the
brain [22, 26]. Using a knockout-confirmed mouse
monoclonal antibody against C9orf72 [28], we detected
an ~ 52 kDa band for C9orf72 corresponding to the
long isoform of the protein [61] in S3 and P4* (Fig. 1b).
We additionally found the C9orf72 interacting partner

Smcr8 in S3 and P4* (Fig. 1b), indicating both a pre- and
post-synaptic localization of C9orf72 and Smcr8.
To validate C9orf72 presence in the post-synaptic

density, we performed immunoprecipitation (IP) of the
PSD-95 complex on 12 pooled wild-type mouse fore-
brains, as previously described [56] with some alterations
(Fig. 1a). Both the input (P4*) and IP fractions enriched
for the bait protein PSD-95 (Fig. 2a). Post-synaptic
receptors GluR1, GluR2, and NMDAR1, in addition to
TDP-43, immunoprecipitated with PSD-95 (Fig. 2a),
whereas the established contaminants neurofilament
light chain (Nefl) and glial fibrillary acidic protein (Gfap)
[56] were absent from the PSD IP (Fig. 2a). Notably,
C9orf72 was detected in the PSD IP, along with its inter-
acting partners Smcr8 and Rab39b (Fig. 2a). To confirm
the brain region localization of synaptic C9orf72, we
performed double immunofluorescence labelling with
antibody to C9orf72 with either a pre- (Synpr) or post-
synaptic (PSD-95) marker on sagittal sections in C9-WT
and C9-KO mice. Low magnification images indicated
that C9orf72 was present in the forebrain regions that
we and others previously identified [16, 28], including
mossy fiber synapses of the hippocampus (Fig. 2b), the
glomerular layer of the olfactory bulb, synapses of the
basal ganglia, substantia nigra, and inferior olive, and in
the granular layer of the cerebellum (data not shown).
We detected partial overlap of C9orf72 with both pre-
synaptic (Synpr) and post-synaptic (PSD-95) markers in
the mossy fiber area of the dorsal hippocampus, whereas
this synaptic C9orf72 signal was ablated in C9-KO mice
(Fig. 2b). Deconvoluted, high magnification images from
C9-WT mossy fiber synapses demonstrated partial over-
lap of C9orf72 with pre-synaptic (Synpr), post-synaptic
(PSD-95), and dendritic (MAP 2) proteins (Fig. 2c).
Furthermore, high-powered micrographs also confirmed
that C9orf72 was partially co-localized with Rab39b in
the mossy fiber synapse region of C9-WT mice (Fig. 2c),
indicating that C9orf72 shares synaptic localization with
previously identified interactors.

Synaptosomal and pre-synaptic preparations are
unchanged in C9-KO versus C9-WT mice
Given that C9orf72 localized to both pre- and post-
synaptic regions, we hypothesized that Rab family mem-
bers, Smcr8, and synaptic receptor protein levels would
show alterations in C9-KO versus C9-WT mice. We puri-
fied intact synaptosome from C9-WT and C9-KO mouse
forebrains and then released the pre-synaptic compartment
using Triton X-100 (S3) (Fig. 1a). Consistent protein load-
ing was shown by stable GAPDH levels across input
fractions (S1) in C9-WT and C9-KO mice. As expected,
C9orf72 was absent in S1 from C9-KO mice along with
undetectable Smcr8 protein levels (Fig. 3a), which is in line
with previous C9orf72 knockout studies in vitro [67] and
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in vivo [55]. However, Rab39b and GluR1 were unchanged
between C9-WT and C9-KO in the S1 fraction (Fig. 3a),
which was verified by densitometric quantification
(Additional file 1: Figure S1). In synaptosomal (SYN)
fractions, we detected stable levels of TDP-43, Rab5, Rab11,
Rab39b, GluR1, GluR2, and NMDAR1 between C9-WT
and C9-KO mice (Fig. 3b), which was quantified by densi-
tometric analysis from Syp-corrected SYN preparations
(Fig. 3b, c). Interestingly, Rab3a levels were significantly
increased in C9-KO synaptosomes compared with C9-WT
(Q < 0.01; Fig. 3b, c), indicating that loss of C9orf72 expres-
sion in C9-KO mice results in a compensatory increase in
Rab3a levels in the pre-synaptic compartment. However,

we found that Rab3a levels were unchanged in S3 between
C9-WT and C9-KO mice (Fig. 4a), which we further con-
firmed by densitometric quantification (Fig. 4b). In the S3
fraction, the levels of TDP-43, Rab5, Rab11, Rab39b, GluR1,
GluR2, and NMDAR1 were also unchanged between C9-
WT and C9-KO mice (Fig. 4a, b), indicating that pre-
synaptic Rab family members show stable levels in the
absence of C9orf72.

Loss of C9orf72 results in decreased Rab39b and
increased GluR1 in the hippocampus of C9-KO mice
We asked whether loss of C9orf72 would lead to alter-
ations in post-synaptic Rab39b and receptor protein

Fig. 2 C9orf72 and Rab39b are localized to post-synaptic densities. a Immunoblot analysis of affinity purified PSD-95 complexes from C9-WT
mice. PSD = PSD-95 antibody; UB = unbound fraction; IgG = rabbit IgG; wash = last wash. Synaptophysin (Syp); Post-Synaptic Density Protein 95
(PSD95); TAR DNA Binding Protein 43 (TDP-43); Chromosome 9 open reading frame 72 (C9orf72); Smith-Magenis syndrome Chromosomal Region
candidate gene 8 (Smcr8); Ras-related proteins Rab3a, Rab5, Rab11, Rab39b; Glutamate receptor 1 (GluR1); glutamate receptor 2 (GluR2); N-
methyl-D-aspartic acid receptor 1 (NMDAR1). Glial fibrillary acid protein (Gfap); Neurofilament Light Chain (Nefl). b Low magnification
immunofluorescent micrographs of C9orf72, PSD-95, and DAPI or C9orf72, Synaptoporin (Synpr), and DAPI in the dorsal hippocampus of C9-WT
and C9-KO mice. Scale = 200 μm. c High magnification immunofluorescent micrographs of C9orf72 with either PSD-95, microtubule associated
protein 2 (MAP2), Synpr, or Rab39b in the CA3 region of the hippocampus from C9-WT and C9-KO mice. Insets contain arrowheads which
indicate co-detection of fluorescent signal between the red and green channels. Scale = 20 μm
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)
Fig. 3 Rab3a protein levels are increased in the synaptosomal fraction of C9-KO mice relative to C9-WT mice. a Immunoblots from the post-
nuclear input fraction (S1) from C9-WT and C9-KO mice (n = 2 mice per sample; n = 4 biological replicates per group). Loading confirmed by
glyceraldehyde 3-phosphate dehydrogenase (GAPDH); Chromosome 9 open reading frame 72 (C9orf72); Smith-Magenis syndrome Chromosomal
Region candidate gene 8 (Smcr8); Ras-related protein Rab39b; Glutamate receptor 1 (GluR1). b Immunoblots from the synaptosomal (SYN)
fraction. c Bar plots of mean immunoblot band density for each antibody probed in the SYN fraction. x-axis = C9-WT versus C9-KO for each
antibody; y-axis = relative density (ratio relative to wild-type); error bars = standard deviation; *Q<0.01. Synaptophysin (Syp); Post-Synaptic Density
Protein 95 (PSD95); TAR DNA Binding Protein 43 (TDP-43); Rab family members Rab3a, Rab5, Rab11, Rab39b; Glutamate receptor 1 (GluR1);
glutamate receptor 2 (GluR2); N-methyl-D-aspartic acid receptor 1 (NMDAR1)

Fig. 4 Pre-synaptic fraction shows stable protein levels between C9-WT and C9-KO mice. a Immunoblots from the pre-synaptic compartment (S3)
from C9-WT and C9-KO mice (n = 2 mice per sample; n = 4 biological replicates per group). b Bar plots of mean S3 immunoblot band densities
for each antibody probed in the S3 fraction. y-axis = relative density; error bars = standard deviation. Synaptophysin (Syp); TAR DNA Binding
Protein 43 (TDP-43); Chromosome 9 open reading frame 72 (C9orf72); Smith-Magenis syndrome Chromosomal Region candidate gene 8 (Smcr8);
Ras-related proteins Rab3a, Rab5, Rab11, Rab39b; Glutamate receptor 1 (GluR1); glutamate receptor 2 (GluR2); N-methyl-D-aspartic acid receptor
1 (NMDAR1)
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levels. For this we performed an immunoblot analysis on
semi-pure post-synaptic density preparations (P4; Fig. 1a)
from C9-WT and C9-KO mice. We detected stable PSD-
95 between C9-WT and C9-KO mice (Fig. 5a), which we
verified by densitometry, and then used PSD-95 protein
levels to estimate relative abundance for the other markers
screened in P4 (Fig. 5b). We observed stable TDP-43,
GluR2, and NMDAR1 levels in P4 and undetectable
Smcr8 levels in C9-KO preparations (Fig. 5a, b), whereas
the relative amount of Rab39b was decreased and GluR1
was increased in P4 from C9-KO versus C9-WT mice

(Q < 0.01; Fig. 5a, b). We next assessed the immunofluor-
escence intensity of Rab39b and GluR1 in 40 μm free-
floating sections from C9-WT and C9-KO mouse brains.
There was a concomitant decrease in Rab39b (Fig. 5c)
with upregulated GluR1 protein levels (Fig. 5d) in the
hippocampus of C9-KO versus C9-WT mice. After quan-
tification, we found a significant decrease in Rab39b
fluorescence intensity in the mossy fiber synapse re-
gion of C9-KO over C9-WT mice (p < 0.001; Fig. 5e),
in agreement with the changes found by immunoblot
in P4 (Fig. 5a). We did not detect a significant decrease

Fig. 5 Rab39b and GluR1 levels are reciprocally altered in the post-synaptic compartment of C9-KO mice. a Western blot analysis of pre-synaptic
density fractions (P4) from C9-WT and C9-KO mice (n = 2 mice per sample; n = 4 biological replicates per group). Post-Synaptic Density Protein 95
(PSD95); TAR DNA Binding Protein 43 (TDP-43); Chromosome 9 open reading frame 72 (C9orf72); Smith-Magenis syndrome Chromosomal Region
candidate gene 8 (Smcr8); Ras-related proteins Rab39b; Glutamate receptor 1 (GluR1); glutamate receptor 2 (GluR2); N-methyl-D-aspartic acid
receptor 1 (NMDAR1). b Bar plots of mean immunoblot band density for each antibody probed in the P4 fraction. x-axis = C9-WT versus C9-KO
for each antibody; y-axis = relative density (ratio relative to wild-type); error bars = standard deviation; *Q<0.01. Representative immunofluorescent
micrographs of c Rab39b and d GluR1 in the dorsal hippocampus of C9-WT versus C9-WT mice. Scale = 200 μm. Quantification of e Rab39b and f
GluR1 fluorescence intensity in the dorsal hippocampus of C9-WT versus C9-WT mice (n = 4 animals; n = 3 micrographs per animal); y-axis =
relative fluorescence intensity as a percentage (%) of C9-WT #p<0.001 for Rab39b; #p<0.05 for GluR1
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of Rab39b in the other brain regions where we de-
tected synaptic C9orf72, such as the glomerular layer
of the olfactory bulb, synapses of the basal ganglia,
substantia nigra, and inferior olive, and in the granular
layer of the cerebellum (data not shown). For GluR1,
we found a significant increase in fluorescence inten-
sity in the entire dorsal hippocampus (p < 0.05; Fig. 5f),
indicating that C9orf72 is required for the proper regu-
lation of hippocampal GluR1 levels in vivo.

Discussion
The elucidation of C9orf72 function remains a crucial
research endeavor. The present study explored the
effect of in vivo knockout of C9orf72 on pre- and post-
synaptic protein expression of C9orf72 interactors
such as Smcr8 and Rab family proteins, and on post-
synaptic receptor levels. Here we show both biochem-
ical and immunohistochemical evidence that C9orf72
localizes to both the pre- and post-synaptic compart-
ment in the mouse forebrain. Our biochemical results
also showed that Smcr8 is present in both the pre- and
post-synaptic compartments, and recapitulated previ-
ous findings showing that loss of C9orf72 expression
results in complete ablation of Smcr8 protein expres-
sion in the forebrain (Ugolino, 2016). Our immunoblot
studies further showed that Rab3a, Rab5, and Rab11
were localized to the pre-synaptic compartment, and
that Rab39b is present in both the pre- and post-
synapse. In C9-KO mice, PSDs in the hippocampus
demonstrated a concomitant decrease in Rab39b levels
with increased GluR1 when compared with C9-WT
mice. However, we could not detect any protein level
changes between C9-WT and C9-KO mice for GluR2
and NMDAR1 in PSDs. Overall, these results suggest
that post-synaptic localization of C9orf72 together
with its Rab GTPase Rab39b are important for the
regulation of glutamatergic receptor levels in vivo.
Interestingly, loss-of-function RAB39B mutations

are causative of both X-linked mental retardation,
showing comorbidity with autism spectrum disorder
and epilepsy [19, 58], and early onset Parkinson’s
disease with synucleinopathy [58]. RAB39B is im-
portant for the coordination of AMPA receptor sub-
unit (GluR1–4) composition and trafficking to the
post-synaptic membrane [19, 36]. Here, we demon-
strated the co-detection of Rab39b with C9orf72 in
the hippocampal mossy fiber region of the mouse
forebrain, which is similar to a previous study show-
ing RAB39B overlap with C9orf72 in human iPSC-
derived motor neurons [16]. It has also been shown
that knockdown of Rab39b in primary neuron cul-
tures results in increased GluR1 trafficking to den-
drites [36]. The current study found that a decrease
in Rab39b coincides with increased GluR1 in

hippocampal PSDs of C9-KO mice. Hence, this work
provides in vivo evidence for a link between post-
synaptic C9orf72 and its effect on the protein levels
of Rab39b and GluR1 in PSDs.
Although C9-KO mice do not demonstrate an overt

behavioural phenotype, we showed that loss of the
C9orf72 gene leads to alterations in AMPA subunit
levels in the murine hippocampus. AMPA receptor/glu-
tamatergic-associated excitotoxicity is a widely studied
disease mechanism underlying ALS [5], FTD [7], and
ALS/FTD [49]. In addition to increased GluR1 levels
demonstrated in C9-KO mice here, upregulation of
GluR1 has been observed in other models, such as cul-
tured neurons from SOD1G93A [46] and TDP43A315T

[25] transgenic mice that also showed heightened sensi-
tivity to glutamate. Furthermore, increased sensitivity to
glutamate has been observed in iPSC-derived neurons
from C9-ALS/FTD patients [15, 45, 47]. Our current
findings are in line with a study demonstrating an in-
crease of GluR1 transcript and protein levels with a de-
creased GluR2 level in iPSC-derived motor neurons
from C9-ALS patients [45]. While we did not observe an
alteration in GluR2 levels in PSD preparations from C9-
KO mice, our results indicate that loss of the C9orf72
gene has specific brain region and synaptic subtype ef-
fects on AMPA receptor subunit composition in vivo.
Another study showed increased GluR1 and NMDAR1
in human C9-ALS post-mortem motor cortices by im-
munofluorescence and in PSD preparations [47]. In par-
tial agreement with our study, this study also showed
that GluR1 was increased in spinal cord motor neurons
from C9-KO mice [47]. More recently NMDAR1 and
GluR6/7 levels were shown to be increased in the hippo-
campus of C9orf72 heterozygous mice [48], indicating
that decreasing C9orf72 expression is sufficient to alter
glutamatergic receptor levels in vivo. Collectively, the re-
sults of these studies and our own converge on gluta-
matergic excitotoxicity as a potentially important aspect
of disease mechanism in both the brain and spinal cord
of C9-ALS/FTD.

Conclusion
The present study revealed C9orf72 expression to be an
important factor in post-synaptic receptor expression
in vivo. We demonstrate a novel localization of C9orf72
to PSDs together with its interactor Smcr8. We also
show that loss of C9orf72 in mice results in decreased
Rab39b expression and increased GluR1 levels in the
hippocampus. Future studies will assess the functional
association between post-synaptic C9orf72 and Rab39b
protein levels on AMPA receptor trafficking. A better
understanding of glutamatergic excitotoxicity in C9-
ALS/FTD and in non-C9 ALS/FTD may lead to novel
therapeutic development.
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Additional file

Additional file 1: Table S1. Primary antibodies used in the current
study. Figure S1. Rab39b and GluR1 protein levels are unchanged in S1
fraction between C9-WT and C9-KO mice. Bar plots of mean S1 immuno-
blot band densities for (GAPDH); Ras-related protein Rab39b;
Glutamate receptor 1 (GluR1). y-axis = relative density; error bars = standard
deviation. All pairwise comparisons are not significant.
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