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Abstract

containment and reduce neuropathology in AD.

Redistribution of the water channel aquaporin-4 (AQP4) away from astrocyte endfeet and into parenchymal
processes is a striking histological feature in mouse models of Alzheimer’s disease (AD) and other neurological
conditions with prominent astrogliosis. AQP4 redistribution has been proposed to impair bulk A clearance in AD,
resulting in increased amyloid deposition in the brain; however, this finding is controversial. Here, we provide
evidence in support of a different and novel role of AQP4 in AD. We found that Agp4 deletion significantly
increased amyloid deposition in cerebral cortex of 5xFAD mice, with an increase in the relative number of fibrillar
vs. dense core plaques. AQP4 deficient 5xFAD mice also showed a significant reduction in the density of GFAP
labeled peri-plaque astrocyte processes. Microglial plaque coverage was also significantly reduced, suggesting
astrocyte involvement in organizing the peri-plague glial response. The alterations in peri-plaque glial structure
were accompanied by increased neuronal uptake of A3 and an increase in the number of dystrophic neurites
surrounding plagues. On the basis of these findings, we propose that redistribution of AQP4 into the parenchymal
processes facilitates astrocyte structural plasticity and the formation of a reactive glial net around plagques that
protects neurons from the deleterious effects of A aggregates. AQP4 redistribution may thus facilitate plague
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Introduction

In healthy brain the water channel aquaporin-4 (AQP4)
is heavily enriched at the endfeet of astrocytes in the
form of supramolecular aggregates that appear as or-
thogonal arrays in freeze-fracture electron micrographs
of the endfoot membrane [38, 48]. AQP4 is upregulated
and redistributed in reactive astrocytes, and becomes
prominently expressed in parenchymal astrocyte pro-
cesses in rodent models of many neurological diseases
including Alzheimer’s Disease (AD) [50, 56]. The signifi-
cance of AQP4 redistribution in AD is uncertain. One
explanation has been offered, a ‘glymphatic’ hypothesis
proposing that mislocalization of AQP4 causes failure of
a trans-endfoot convective fluid flow, which impairs
clearance of toxic protein aggregates from the brain
parenchyma into the peri-venular spaces during sleep
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[23, 54]. In support of this hypothesis, an increase in
B-amyloid deposition has been observed in APP/PS1
mice that lack AQP4 [55], and human AQP4 polymor-
phisms have been reported as a genetic risk factor for AD
[7, 37]. However, the plausibility of the ‘glymphatic’
hypothesis has been questioned on theoretical grounds
[2, 21, 24] and from the fact that clearance of 3-amyloid
aggregates occurs primarily via the peri-arterial and not
the peri-venular spaces [1, 8]. Further, the relevance of the
glymphatic hypothesis to human disease is unclear due to
differences in AQP4 distribution between rodents and
humans [16], and in independent studies we did not ob-
serve AQP4-facilitated parenchymal convection [44].
Therefore, alternative mechanisms may be needed to ex-
plain the deleterious effect of Agp4 deletion in experimen-
tal AD models.

Astrogliosis is a pathological hallmark of AD with
complex effects on disease progression [4, 12, 49]. React-
ive astrocytes phagocytose amyloid aggregates and
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dystrophic synapses [19, 34, 52], form a reactive glial net
that surrounds and invades plaques [6], and are involved
in the inflammatory response to amyloid deposition [53].
AQP4 facilitates astrocyte migration and glial scar for-
mation in the response to traumatic brain injury [3, 39]
and is involved in astrocyte cytokine release in response
to neuroinflammation [30]. AQP4 function as an effector
in the astrocyte response to brain injury suggests that its
redistribution to peri-plaque astrocyte processes might
be an important component of the astrocyte response in
AD, rather than a pathological consequence of endfoot
damage.

Here, we compared amyloid deposition and peri-
plaque astrocyte structure in the 5XFAD mouse model of
AD [35] bred with Agp4 knockout mice. We found in-
creased amyloid deposition in Agp4 knockout 5xFAD
mice compared with wild-type 5xFAD littermates, with
marked alterations in plaque structure, peri-plaque
astrocyte and microglial organization, and neuronal in-
jury surrounding plaques. These results demonstrate
that parenchymal AQP4 participates in peri-plaque
astrocyte structural reorganization, and support a
novel role for AQP4 in AD pathogenesis in which its
redistribution facilitates plaque containment and re-
duces neuropathology.

Materials and Methods

Mice

5xFAD mice overexpressing human APP and PSENI1
with AD-associated mutations were obtained from the
NIH mutant mouse research and resource center
(MMRCC). These mice were bred with Agp4~~ mice on
a C57Bl/6 background that were previously generated in
our laboratory [32]. Offspring were genotyped for APP
and PSEN1 (which co-segregated as expected) and for
Agp4. F1 offspring that were heterozygous at all 3 loci
(5xFAD™"; Agp4*'") were then interbred and F2 off-
spring were genotyped as before. F2 offspring that were
heterozygous for APP and PSEN1 and either wild-type
or homozygous negative for Agp4 (5xFAD™'~; Agpd*'*
or 5xFAD""; Agp4™'") were maintained until 7-9
months of age and then sacrificed by transcardial perfu-
sion with 4% formaldehyde and the brain was processed
for paraffin embedding. All procedures were approved
by the UCSF Institutional Animal Care and Use Com-
mittee. A total of 5 Agp4”’~ 5xFAD mice and 8
wild-type littermates were used in this study.

Human samples

Tissue was obtained from the UCSF neurodegenerative
disease brain bank, 3 AD and 3 control samples were
studied. AD samples (2M, 1F) had both clinical and
neuropathological diagnosis of AD without comorbidity,
mean age at death was 84 years and the post-mortem
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interval before fixation was 5.6—8.2h. Control samples
(1 M, 2F) had no clinical neurological diagnosis, 1 sam-
ple had no post mortem neuropathological diagnosis, 1
had a pathological diagnosis of cerebrovascular disease,
and 1 was diagnosed with Lewy Body Disease in the
brainstem. Mean age at death was 86.7 years and the
post mortem interval was between 7.8-9.8 h.

Antibodies

The following primary antibodies were used in this study:
rabbit polyclonal anti-AQP4 (Sigma, cat # SAB5200112),
goat polyclonal anti-AQP4 (Santa Cruz, cat # sc9888),
chicken polyclonal anti-GFAP for staining astrocyte pro-
cesses (Millipore, cat # AB5541), mouse monoclonal 6E10
anti-Ap (Eurogentec, cat # SIG-39320), rabbit polyclonal
Iba-1 for staining microglia (Wako, cat # 019-19,741),
rabbit polyclonal anti-NeuN for staining neurons (Milli-
pore, cat # ABN78), and rabbit monoclonal anti-synapto-
physin for identification of pre-synaptic dystrophies
(Abcam, cat # ab52636). Alexa 488, 555 or 647 conjugated
secondary antibodies (Invitrogen) were used for detection.

Immunostaining

5-um thick microtome sections were cut from
paraffin-embedded samples and mounted on glass slides.
Sections were allowed to dry for at least 48 h after sec-
tioning, then deparaffinized with xylene and rehydrated
in a dilution series of water in ethanol. Antigen recovery
was performed by placing slides in boiling 10 mM cit-
rate, 0.05% Tween-20, pH 6.0 and allowing them to cool
for 30 min. Slides were then equilibrated in PBS and
blocked in PBS containing 1% BSA and 0.1% Triton
X-100 for 30 min. Slides were stained with primary anti-
bodies in 1 pg/ml in blocking buffer for 1h at room
temperature, rinsed 3 times with PBS, then stained with
secondary antibodies at 1pg/ml in blocking buffer.
Slides were then washed 5 times in PBS with a 5min
interval for each wash, then mounted under coverslips
in ProLong Gold antifade. For thioflavin S staining, sam-
ples were incubated in a 1% solution of thioflavin S in
PBS for 5 min following antibody staining. Samples were
then washed 5 times in PBS with a 5 min incubation be-
tween each wash, prior to mounting.

Microscopy and image analysis

Sections were imaged with a Nikon C1 confocal micro-
scope using 4x NAO0.15, 20x NAO.5 or 100x NA1.4 ob-
jectives. For 3-color imaging, samples were scanned
sequentially with the 488 nm, 561 nm and 647 nm lasers
to ensure minimal crosstalk between channels. Analysis
of plaque size and number was done using FIJI software.
20x images of AP staining from brain cortex were
intensity-thresholded and objects greater than 50 pm?

were counted and measured for size. Plaque
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morphological analysis was done by comparing the rela-
tive staining intensity of immunolabeled AP and thiofla-
vin S. For measurement of the density of glial processes
in and around plaques, 100x images of GFAP and A la-
beled sections were used. A} images were blurred with a
Gaussian filter of 2 um radius and thresholded to define
the plaque boundary. A peri-plaque region extending
5um around the plaque was then created using the
‘make band’ function in FIJI. The average GFAP intensity
in these 2 areas was then determined for each plaque
and normalized to the average GFAP intensity in the
surrounding field of view. The number of Ibal-positive
cells was determined by intensity thresholding and auto-
mated counting; for measurement of plaque microglial
coverage, the plaque perimeter and the length of micro-
glial processes associated with the perimeter were mea-
sured manually. For measurement of neuronal AP
uptake, the fraction of NeuN-positive cells containing 3
or more A labeled puncta surrounding plaques was cal-
culated. For measurement of AQP4 polarization, the
background corrected mean fluorescence intensity of
AQP4 labeling was determined within manually drawn
ROIs in the perivascular or peri-plaque regions and di-
vided by the mean intensity within non-plaque paren-
chymal areas.

Super-resolution microscopy

dSTORM imaging of paraffin sections from 5xFAD
mice, where astrocyte processes were labeled with
anti-GFAP antibody and Alexa 647 labeled secondary
antibody, was performed as described previously [43].

Statistical analysis
Data was collated in Microsoft Excel. Statistical tests and
graphing were performed with GraphPad Prism v. 5.01.

Results

Increased plaque size but reduced compact amyloid in
5xFAD mice lacking AQP4

To investigate the effect of Agp4 deletion on amyloid de-
position in the brain we generated 5xFAD mice that
lacked Agp4 and aged them for 7-9 months before sacri-
fice. Staining of coronal sections with antibodies to A re-
vealed increased amyloid deposition in Agp4 deficient
5xFAD mice (Fig. la). To quantify amyloid deposition,
intensity-based thresholding and automated object count-
ing were used to compare the size and number of plaques
in individual mice. Analysis of the average plaque size and
frequency distribution of plaque sizes showed significantly
greater plaque size in the absence of AQP4 (Fig. 1b left
and center left panels). The number of plaques in cerebral
cortex was significantly greater in the Agp4 deficient
5xFAD mice, which in combination with increased plaque
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size resulted in a more than 2-fold increase in total amyl-
oid deposition (Fig. 1b center right and right panels).

Amyloid plaques are classically described as
dense-cored, fibrillar or diffuse based on morphological
criteria and affinity for dyes that bind [B-pleated sheets
such as thioflavin S [10, 14]. We found that plaques
from 5xFAD mice could be classified as dense-cored, fi-
brillar or mixed (compact core with fibrillary ‘halo’) with
compact plaque cores showing very bright thioflavinS la-
beling and fibrillary plaques showing weaker thioflavin S
labeling. Classical diffuse plaques, which have no thiofla-
vinS labeling and no associated neuritic damage, were
not seen in the 5xFAD mice. We found significantly
more fibrillar plaques and significantly fewer dense core
plaques in the Agp4 knockout 5xFAD mice (Fig. 1d), in-
dicating an altered amyloid accumulation pattern in the
absence of AQP4.

AQP4 is required for enrichment of astrocyte processes
within and around plaques

Astrocytes and microglia form a reactive glial net around
plaques [6]. By super-resolution microscopy a fine web
of GFAP-labeled processes was seen surrounding plaque
cores in wild-type 5xFAD mice (Fig. 2a). As AQP4 facili-
tates astrocyte migration and glial scar formation at sites
of brain injury [39], we investigated the effect of Agp4
deletion on the arrangement of astrocyte processes sur-
rounding plaques.

Immunofluorescence in Fig. 2b shows that GFAP-posi-
tive processes surround and invade plaques in wild-type
5xFAD mice; however, GFAP labeled processes were less
prominent inside and around plaques in Agp4 knockout
5xFAD mice. The extent of GFAP labeling inside and
around plaques was quantified by intensity thresholding
to identify plaque and peri-plaque regions of interest
(Fig. 2c). GFAP labeling was increased in both the
plaque interior and peri-plaque regions in wild-type
5xFAD mice when compared with the remaining,
non-plaque-containing field of view. In the absence of
AQP4, the GFAP labeling intensity in both the plaque
interior and peri-plaque regions was significantly re-
duced compared to the non-plaque area (Fig. 2d, e).
These results suggest the involvement of AQP4 in re-
modeling astrocyte processes around amyloid plaques.

Reduced microglial recruitment to plaques in AQP4
deficient 5xFAD mice

Motivated by the importance of microglia in degrading
Ap [28] and forming compact plaque cores [13, 57], we
investigated the effect of Agp4 deletion on the microglial
response in 5XFAD mice. Immunofluorescence with
antibodies to AP, Ibal and AQP4 from a wild-type,
5xFAD mouse showed AQP4-enriched astrocyte pro-
cesses surrounding both plaque and plaque-associated
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Fig. 1 Increased amyloid accumulation and more fibrillar plaques in Agp4 deficient 5XxFAD mice. a Distribution of immunolabeled A plaques in
the brain of Agp4 deficient and wild-type 5xFAD littermate at low and intermediate magnifications, and representative high magnification images
of individual plaques. b Average plague size in each mouse (left panel), cumulative plaque size distribution of all amyloid plaques in 5xFAD mice
of each genotype, (center left panel), density of plaques in cortex (center right panel) and total amyloid load (right panel), as determined by
intensity thresholding and automated object counting. * p < 0.05, ** p <0.01 by unpaired t-test. Lines show mean and S.EM. of each genotype,
n=8 Agp4”" and 5 Agp4™’~ mice. ¢ AB immunolabeling and thioflavin S staining showing dense core (asterisk), fibrillar (solid arrow) or mixed

\

(open arrow) plaques. d Fraction of plaques in each class. *** p < 0.001, *p < 0.05, n.s p > 0.05 by 2-way ANOVA with Bonferroni post-test

microglia (Fig. 3a). Ibal staining in wild-type and Agp4
deficient 5xFAD mice was compared to determine if
Agp4  deletion  disrupted peri-plaque  microglial
organization. Low magnification images (Fig. 3b left; Fig.
3c) show similar numbers of Ibal-positive cells in
wild-type and Agp4 deficient 5xFAD mice. At higher
magnification, microglia in wild-type mice were seen to
surround and contain plaques either completely or par-
tially; however, microglia did not form an effective bar-
rier around plaques in Agp4 deficient 5xFAD mice (Fig.
3b). The fraction of the plaque perimeter bounded by
microglia was significantly reduced in Agp4 deficient
5xFAD mice (Fig. 3d).

Increased intraneuronal AB in AQP4 deficient 5xFAD mice
Accelerated cognitive decline has been reported in
AQP4 deficient APP/PS1 mice [55] and intraneuronal
AP deposits are associated with neuron loss and cogni-
tive deficit [11, 51]. Extensive uptake of AP by cells in
the vicinity of plaques was visible in Agp4 deficient
5xFAD mice (Fig. 4a left panels, arrowheads), which by
co-staining with the neuronal marker NeuN identified
these cells as neurons (Fig. 4a, right). The fraction of
neurons around plaques with punctate AP staining was
markedly increased in Agp4 deficient 5xFAD mice (Fig.
4b). The formation of dystrophic neurites around pla-
ques is another feature of AP mediated neurotoxicity
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Fig. 2 Reduced peri-plaque astrocyte coverage in AQP4 deficient 5xFAD mice. a Super-resolution imaging demonstrates a mesh of GFAP labeled
processes surrounding the plaque core in a wild-type 5xFAD mouse. b AR, GFAP and AQP4 immunofluorescence showing astrocyte processes
around and within plaques of Agp4™* and Agp4 ™/~ 5xFAD mice. The dotted square area denote the region shown in ¢. ¢ Boundaries of segmented
plaque interior and plaque periphery ROIs (yellow) superimposed on the corresponding GFAP image of astrocyte processes used to determine the
extent to which astrocytes surround and infiltrate plaques. d GFAP enrichment, defined as average GFAP intensity within the indicated area divided
by average GFAP intensity in the surrounding field of view, from within (‘plaque interior) and around (‘plaque periphery’) plagues displayed as the
cumulative frequency for all plaques from Agp4** and Agp4~~ 5xFAD mice. e Average GFAP enrichment within and around plaques for all measured
plaques in each individual Agp4™* or Agp4 ™~ 5xFAD mouse (Agp4”* n=8, Aqgp4” n=5," p <001, ** p <0001 by unpaired t-test)

[18]. The density of presynaptic dystrophies surrounding
plaques was visualized using the synaptic vesicle marker
synaptophysin [25, 40] (Fig. 4c, arrowheads). The frac-
tion of neuritic plaques containing four or more large
presynaptic dystrophies was much greater in the absence
of AQP4 (Fig. 4d), further supporting the conclusion
that disorganization of the peri-plaque glial net results
in increased toxicity to surrounding neurons.

AQP4 distribution in human AD

Redistribution of AQP4 away from endfeet has been re-
ported in rodent models of AD [50, 56]; however, in hu-
man brain the basal polarization of AQP4 to endfeet is
far less dramatic and only small disease-associated
changes in endfoot AQP4 have been suggested [16, 58].
We investigated AQP4 distribution in post-mortem sam-
ples of the inferior frontal gyrus from patients with diag-
nosed AD and age-matched controls without AD. In the
AD brain, AQP4 was enriched in the peri-plaque pro-
cesses of reactive astrocytes (Fig. 5a, c), as was observed
in mice (Fig. 2a). In rodent AD, AQP4 was clearly redis-
tributed away from endfeet (Fig. 5b, left, Fig. 5d);

however, this was not observed in human brain, where
AQP4 was not as heavily polarized in control samples
(Fig. 5b right). These results demonstrate that the en-
richment of AQP4 in peri-plaque astrocyte processes as
described herein is relevant to human AD; however, the
dramatic redistribution of AQP4 away from endfeet ob-
served in mouse AD models is not observed in human,
due to lower basal AQP4 levels in endfeet.

Discussion

Our data here that Agp4 deletion increases amyloid de-
position in a mouse model of AD is in agreement with
prior reports [55], but challenge the prevailing notion
that the increased amyloid is a consequence of reduced
AP clearance due to loss of perivascular AQP4 [22]. In-
stead, we found that Agp4 deletion markedly impairs
peri-plaque astrocyte structural organization and the re-
cruitment of microglia to plaques. This is associated
with an increase in the number of fibrillar plaques and
consequent greater damage to neurons surrounding pla-
ques, which can account for the reported worsening of
cognitive signs in Agp4 deficient AD model mice [55].
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Fig. 3 Reduced microglial plaque coverage in Aqgp4 deficient 5xFAD mice. a AB, Ibal and AQP4 immunofluorescence showing close association
peri-plaque AQP4-labeled astrocyte processes and Ibal-labeled microglia in wild-type 5xFAD mouse. b Low (left panels) and high (right panels)
magnification images of Ibal-labeled microglia surrounding plaques in Agp4** and Agp4 ™~ 5xFAD mice. ¢ Average number of Ibal-expressing
cells in cortex of Agp4™* and Agp4™’~ 5xFAD mice as determined by thresholding and object counting (difference not significant). d Fractional
coverage of plaque cores with Ibal-labeled microglial processes displayed as a frequency distribution for all plaques from Agp4*’* and Agp4™/~
5XFAD mice (left panel). Average extent of plague containment by microglia as determined for at least 10 plaques in each individual mouse (right

On the basis of these results we propose a novel mech-
anistic model to account for the role of AQP4 in amyl-
oid accumulation (Fig. 6). According to this model,
increased expression of AQP4 in glial processes occurs
in response to the initial formation of insoluble amyloid
aggregates, which facilitates structural rearrangements in
astrocytes and the recruitment of microglia to plaques.
The resulting physical barrier helps to segregate plaques
from the surrounding tissue.

An increase in amyloid plaque accumulation in AD can
potentially be attributed to impaired AP clearance, in-
creased AP production, or a greater propensity for soluble

AP to incorporate in plaques. Clearance of A monomers
may occur by degradation (25-50%), transport across the
blood brain barrier (25-40%), or bulk clearance into the
CSF (~10%) [9, 20, 45]. 1liff et al. [23] reported that clear-
ance of injected A from the brain was sensitive to Agp4
deletion, and proposed a role for AQP4 in bulk clearance.
However, the time course of clearance was more rapid
than that of other markers such as inulin that are cleared
by a bulk clearance mechanism [20]. We did not find sig-
nificantly altered distribution of injected AP in Agp4 defi-
cient mice [44], which suggests that increased amyloid
accumulation in Agp4 deficient mice is unlikely to be
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explained by impaired clearance. Since presynaptic dystro-
phies are major sites of AP synthesis [40], the increased
number of dystrophic neurites in Agp4 deficient AD mice
may increase amyloid accumulation and neuronal A up-
take. Additionally, incorporation of soluble Af into pla-
ques is increased in regions that are not surrounded by
glia [13]. Finally, plaque morphological alterations are also
potentially a consequence of failure of peri-plaque glia to
condense amyloid [57], although other explanations are
possible.

We find that the density of astrocyte processes sur-
rounding and within amyloid plaques is reduced in Agp4
deficient AD mice. The presence of astrocyte processes
in amyloid plaques from AD patients has been long rec-
ognized [15] and the barrier formed by astrocytes and
microglia around plaques was recently described as a re-
active glial net [6]. Deletion of astrocyte intermediate
filament proteins that are involved in structural reorien-
tation increases amyloid accumulation in mouse models
of AD [26], suggesting a role for astrocyte structural
reorganization in limiting amyloid accumulation. In
addition to GFAP and AQP4, peri-plaque astrocyte pro-
cesses are enriched in connexins [33], suggesting struc-
tural similarities to other glial barriers such as the glia

limitans and glial scars formed following trauma. The
observation here that AQP4 participates in reorientation
of astrocytic processes toward plaques is consistent
with previous observations that AQP4 facilitates ex-
tension of astrocyte processes during their migration
[42] and glial scar formation in response to trauma
[39]. Mechanistically, this is thought to occur via
coupling of solute and water uptake, which osmotically in-
flates the leading edge of extending processes and facili-
tates actin polymerization-driven extension [36].

An additional finding was impaired recruitment of
microglia to plaques in Agp4 deficient AD mice. Micro-
glia phagocytose and degrade AP [28] and deletion of
microglial chemokine receptors prevents microglial re-
cruitment to plaques and increases amyloid deposition
[17], similar to the changes observed here in Agp4 defi-
cient AD mice. Astrocytes are an important source of in-
flammatory cytokines in AD [29] and AQP4 deletion
impairs release of proinflammatory cytokines by astro-
cytes [30, 31], suggesting that the failure of microglial
accumulation around plaques in Agp4 deficient AD mice
might be a consequence of impaired astrocyte cytokine
release. Although the mechanism of AQP4-dependent
cytokine release is not known, Agp4 deletion impairs
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areas, in mouse and human AD. d Average enrichment of AQP4 in perivascular regions, compared to the parenchyma, in mouse and human control and
AD. Samples from 6 wild-type and 5 5xFAD mice were compared along with 3 control samples and 3 AD human samples. (*** p < 0.001

by unpaired t-test)

astrocyte Ca®* signaling [5, 47], which is involved in
cytokine release [41]. Astroglial ApoE and liver X recep-
tor are required for microglial AP phagocytosis [46],
providing further evidence that interaction between as-
trocytes and microglia is required for efficient Ap deg-
radation. Also, perhaps altered plaque structure and/or
failure to remodel the extracellular space in Agp4 defi-
cient mice could lead to failure of microglia to interact
with plaques.

Agp4 deletion was associated with an increase in the
number of plaques surrounded by dystrophic neurites
and an increase in the number of neurons containing Ap
aggregates. Although the cause of this is unclear, it may
be related to impairment in plaque containment or to
the greater amount of aggregated amyloid present in the
mice lacking Agp4. Neuritic damage associated with

fibrillary plaques may be due to direct penetration of the
neuronal membrane by extending amyloid fibrils in the
absence of glial containment [13, 57]. Reactive astrocytes
also play an important role in phagocytosis and degrad-
ation of dystrophic neurites. Since AQP4 is heavily
enriched in the limiting membrane of astrocyte phago-
somes [19], Agp4 deletion may also impair clearance of
damaged neurites from the peri-plaque area.

The marked enrichment of AQP4 in astrocyte endfeet
and its redistribution to the parenchyma in mouse
models of AD have led to speculation that loss of end-
foot AQP4 may be an important cause of amyloid accu-
mulation in the ageing brain due to impairment of the
‘glymphatic’ system [27]. However, the extent of AQP4
enrichment in endfeet in human brain is much less than
in rodents [16] and the extent of AQP4 redistribution in
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Fig. 6 Proposed role of AQP4 in containment of amyloid plaques and recruitment of microglia. When AQP4 is present, its redistribution to peri-
plaque astrocyte processes is associated with formation of a glial net surrounding the plaque, recruitment of microglia, and partial protection of
nearby neurons from the deleterious effects of AR aggregates. In AQP4 deficiency, astrocytes fail to contain plaques or recruit microglia, resulting

human AD is very limited [58], calling into question the
relevance of findings from mouse models to human AD.
In agreement with these findings we were unable to find
any indication of AQP4 redistribution from endfeet to
the non-plaque parenchyma in a limited number of hu-
man AD samples. We did, however, find that AQP4 was
enriched within the peri-plaque glial net surrounding
plaques from human AD patients to the same extent as
in the mouse model, suggesting that AQP4 mediated re-
modeling of peri-plaque astrocyte processes is relevant
to the human disease.

Conclusions

In summary, our results support a novel role for AQP4
in the pathology of AD and highlight the importance of
the peri-plaque glial environment as a determinant of

amyloid neurotoxicity. Further understanding of the role
of astrocyte water transport in formation of glial barriers
is therefore expected to identify novel therapeutic ap-
proaches that can enhance endogenous protective mech-
anisms that limit amyloid neuropathology in AD.
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