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Abstract

Although the precise neuropathological substrates of cognitive decline in Parkinson’s disease (PD) remain elusive, it
has long been regarded that pathology in the CA2 hippocampal subfield is characteristic of Lewy body dementias,
including dementia in PD (PDD). Early non-human primate tracer studies demonstrated connections from the
nucleus of the vertical limb of the diagonal band of Broca (nvlDBB, Ch2) to the hippocampus. However, the
relationship between Lewy pathology of the CA2 subfield and cholinergic fibres has not been explored. Therefore,
in this study, we investigated the burden of pathology in the CA2 subsector of PD cases with varying degrees of
cognitive impairment and correlated this with the extent of septohippocampal cholinergic deficit. Hippocampal
sections from 67 PD, 34 PD with mild cognitive impairment and 96 PDD cases were immunostained for tau and
alpha-synuclein, and the respective pathology burden was assessed semi-quantitatively. In a subset of cases, the
degree of CA2 cholinergic depletion was quantified using confocal microscopy and correlated with cholinergic
neuronal loss in Ch2. We found that only cases with dementia have a significantly greater Lewy pathology, whereas
cholinergic fibre depletion was evident in cases with mild cognitive impairment and this was significantly
correlated with loss of cholinergic neurons in Ch2. In addition, multiple antigen immunofluorescence demonstrated
colocalisation between cholinergic fibres and alpha-synuclein but not tau pathology. Such specific Lewy pathology
targeting the cholinergic system within the CA2 subfield may contribute to the unique memory retrieval deficit
seen in patients with Lewy body disorders, as distinct from the memory storage deficit seen in Alzheimer’s disease.
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Introduction
The clinical presentation of Parkinson’s disease (PD) dis-
plays a high degree of heterogeneity, not limited to the
classical quartet of motor signs [50]. It has been increas-
ingly recognised that non-motor symptoms produce a
significant impact on the quality of life of both patients
and their carers [15, 23, 26, 48]. In particular, cognitive
impairment is prevalent among PD patients and progres-
sion to dementia is common in the later stages of dis-
ease [37]. Clinically, PDD patients present with more

severe attention deficits and impairment in executive
function and visuospatial function as compared with
Alzheimer’s disease (AD), with relative sparing of lan-
guage functions [27]. In terms of the memory domain,
retrieval memory is more affected in PDD whereas en-
coding and storage memory decline in AD [27]. As a re-
sult, the Movement Disorder Society Task Force
established consensus criteria for the diagnosis of PDD
[27] and PD with mild cognitive impairment (PD-MCI)
[53] to distinguish these entities from other types of cog-
nitive impairment.
Despite extensive clinicopathological studies con-

ducted over the last few decades, the exact neuropatho-
logical substrate contributing to cognitive decline in PD
remains unclear. The neuropathology of PDD is similar
to dementia with Lewy bodies (DLB) [52], which is
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thought to fall within the same spectrum of disease as
Lewy body dementia (LBD). AD-type pathology includ-
ing hyperphosphorylated tau and amyloid-beta (Aβ) is
common in LBD, but its burden is often not as severe as
cases with pure AD [9, 34, 45, 66]. The burden of
alpha-synuclein (αSN) pathology in the form of cortical
Lewy bodies (LB) was found to be associated with the
severity of cognitive decline in PD cases, even in the ab-
sence of AD pathology [49, 56]. However, recent studies
have shown that a multifactorial combination of LB and
AD pathology burden may be a better predictor of de-
mentia in PD [18, 39, 40]. Although motor impairment
in PD is correlated with the depletion of dopamine,
there is limited improvement of cognitive function in
PD patients on dopamine replacement therapy [32, 38],
suggesting that the development of PDD is probably due
to other neurochemical deficits. The “cholinergic hy-
pothesis” proposed in the 1970s and 80s emphasised the
importance of acetylcholine in cognition [10]. Initially
focused primarily on AD brains, cholinergic dysfunction
in PD and LBD was found to be at least as severe as that
seen in AD patients, as evidenced from studies on neur-
onal loss in the acetylcholine-producing cells of the nu-
cleus basalis of Meynert (nbM) [63].
There has been recent interest in the hippocampal CA2

subfield following better morphological and physiological
characterisation of the hippocampal subregions [24, 62]. It
was previously reported that ubiquitin-positive dystrophic
neurites were present in the CA2/3 subregions of DLB
cases which differentiates them from AD [21, 22]. These
were later found to be αSN-immunopositive Lewy neur-
ites which frequently co-exist with cortical Lewy bodies
[44] and were significantly associated with the presence of
dementia in PD [47]. In a more recent study, Hall and col-
leagues found Lewy neuritic pathology in the CA2 sub-
region even in non-demented PD cases. It was also found
that the increased αSN pathology in the CA2 region was
associated with a reduction of cholinergic activity, as mea-
sured with a choline acetyltransferase (ChAT) assay [33].
Coincidentally, the CA2 subfield was found to have the
highest density of ChAT-positive fibres [64] with early
non-human primate tracer studies identifying the origin
of cholinergic hippocampal innervation from the medial
septal nucleus (MSN; Ch1) and the nucleus of the vertical
limb of the diagonal band of Broca (nvlDBB, Ch2) [59].
Although no significant changes were found between PD
and PDD cases [33], that particular study was underpow-
ered due to its limited sample size. Furthermore, signifi-
cant depletion of cholinergic neurons in the Ch1 and Ch2
was found in DLB cases compared with AD cases [30].
Based on evidence from existing studies, we hypothe-

sise that cholinergic dysfunction contributes to progres-
sive cognitive decline in PD and is associated with
increased Lewy pathology within the CA2 hippocampal

subfield. We aimed to study tau and αSN pathology burden
in the CA2 subsector in PD cases with different degrees of
cognitive impairment. We also investigated the degree of
cholinergic degeneration in the CA2 subsector and the Ch2
to identify septohippocampal cholinergic pathway involve-
ment. Finally, we explored associations between tau, αSN
and cholinergic processes in the CA2 subfield.

Methods
Cases
Post-mortem human brain samples used in this study
were provided by the Parkinson’s UK Tissue Bank at Im-
perial College London (Registered charity in England
and Wales (258197) and in Scotland (SC037554)). Tissue
sections containing the hippocampus and the nvlDBB
were obtained.
The diagnosis of PD was based on established clinical

and neuropathological criteria [20, 43]. In addition,
Braak αSN stage and modified Braak tau stage were
assigned based on the recommended assessment proto-
col outlined by BrainNet Europe (BNE) [3, 4]. Briefly,
Braak αSN stage was assigned based on the topograph-
ical distribution of αSN-immunoreactive inclusions in
the medulla, pons, midbrain, basal forebrain, hippocam-
pus, and cingulate, temporal, frontal and parietal cortical
regions. Braak tau stage was assessed using 4 sections
immunostained for tau, including the visual cortex in-
cluding the calcarine fissure, the middle temporal gyrus,
the anterior hippocampus and the posterior hippocam-
pus. Retrospective case-note analysis was performed by
a movement disorder specialist (RKBP) and research
postgraduate (AKLL). The cognitive status of patients
was obtained from their clinical records. PD patients
with cognitive deficits severe enough to interfere with
independent activities of daily living, satisfying DSM-IV
[5] and ICD-10 [67] clinical criteria for dementia and
Movement Disorder Society Task Force diagnostic cri-
teria for PDD [27] were classified as PDD. PD patients
with significant cognitive deficits in any cognitive do-
main including memory, executive function, visuospatial
function, attention and language, typically accompanied
by psychotic symptoms with visual hallucinations, but
not to the extent that they prevented independent activ-
ities of daily living, were classified as PD with mild cog-
nitive impairment (PD-MCI).

Selection and exclusion criteria
Only cases with available hippocampal sections with the
CA2 region clearly visible, adequate tissue fixation and
good tissue quality were selected. Cases were excluded if
the clinical notes were incomplete or of poor quality.
Hence, only cases with clinical follow-up within 24
months before death were included. Cases with exten-
sive vascular lesions in the brain including cerebral
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infarcts, haemorrhage, severe CAA pathologies and small
vessel disease, which may contribute to cognitive decline,
were excluded. Cases with severe co-existing AD path-
ology (Braak tau staging IV or above) were also excluded.
Finally, cases with co-existing neuropathology including
tumours, demyelinating lesions, fronto-temporal lobar de-
mentia, amyotrophic lateral sclerosis, Creutzfeldt-Jakob
disease and other Parkinsonism pathologies including pro-
gressive supranuclear palsy (PSP), corticobasal degener-
ation (CBD) and multiple systems atrophy (MSA), were
also excluded.

Semi-quantitative analysis of hippocampal CA2 pathology
For the first part of the study, formalin-fixed, paraffin-
embedded diagnostic slides (7 μm thick) containing the
CA2 region of the hippocampus, stained for αSN and
tau (Phospho-PHF-tau pSer202 + Thr205) were obtained
from the tissue bank. Serial haematoxylin and eosin
(H&E) stained slides were used as a guide for the identi-
fication of the CA2 region. We defined the CA2 region
as the pyramidal cell layer parallel to the boundaries set
by the ends of the granule cells of the external limbs of
the dentate gyrus (Fig. 1). This delineation method has
been applied previously in the literature [6, 12]. Semi-
quantitative analysis was performed by three investiga-
tors (SMG, AKLL and TWC) blinded to the clinical
diagnosis of the cases. Immunostained hippocampal sec-
tions were initially screened under a × 10 stage objective
and assessment of pathology was then carried out under
a × 20 stage objective. Overall Lewy pathology burden
and neuritic tau burden were graded from 0 (absence to
pathology) to 3 (abundant pathology) (Fig. 2). In total,
3–4 sections per case were analysed in this study.

Choline acetyltransferase immunohistochemistry and
immunofluorescence
Cholinergic neurons in the nvlDBB (Ch2) and choliner-
gic varicosities in the hippocampal CA2 region were
visualised using immunohistochemistry and immuno-
fluorescence respectively for choline acetyltransferase
(ChAT). For this study, tissue sections at a coronal level
just anterior to the anterior commissure decussation
were obtained for Ch2 quantification as the highest
density of cholinergic neurons is found at this level (as
Fig. 4l in [54]). Tissue sections were dewaxed in two
changes of xylene (10 min, 5 min) and rehydrated
through decreasing concentration of industrial methyl-
ated spirit (IMS)/ethanol (100, 100, 90, 70%; 5 min each)
and subsequently in distilled water (5 min). For immu-
nohistochemistry, basal forebrain sections (containing
the nvlDBB) were immersed in 1% hydrogen peroxide
(H2O2)/phosphate buffered saline (PBS, pH 7.4) for 30
min at room temperature for quenching of endogenous
peroxidase activity. Next, tissue sections were pretreated
with autoclaving (25 min) in 0.01M sodium citrate buf-
fer (pH 6) before rinsing in PBS (3 × 5min) and incuba-
tion with anti-ChAT antibodies (1:100 diluted with 0.3%
Triton-X 100 in PBS; AB144P; Millipore, UK) at 4 °C over-
night. 2% rabbit serum (for basal forebrain sections) or 2%
donkey serum (for hippocampal sections) was added in
the antibody diluent for blocking of non-specific staining.
On the second day, tissue sections were washed with PBS

(3 × 5min) and signal amplification techniques were carried
out. In the case of standard immunohistochemistry, sections
were incubated with biotinylated rabbit-anti-goat secondary
antibodies (1:100 diluted in 0.3% Triton-X 100 in PBS;
BA-5000; Vector Laboratories, UK) for 1 h at room
temperature. After rinsing with PBS (3 × 5min), sections
were incubated with avidin-biotin complex using the VEC-
TASTAIN Elite ABC Kit (PK-6100; Vector Laboratories,
UK) for 1 h at room temperature. Subsequently, tissues were
washed in PBS (3 × 5min) and visualised with 3′3-diamino-
benzidine (DAB) (5min). Tissue sections were then washed
in distilled water (2 × 5min) and briefly counterstained with
haematoxylin. Finally, tissues were rehydrated and cleared
through an increasing concentration of IMS/ethanol (70, 90,
100, 100%; 5min each) and in xylene (2 × 5min), before
coverslipping with Distrene-Plasticiser-Xylene (DPX).
For immunofluorescence, hippocampal sections were

incubated with Alexa Fluor 488-conjugated donkey
anti-goat secondary antibody (1:200; A-11055; Thermo-
Fisher Scientific, UK) for 1 h at room temperature. Sec-
tions were then rinsed briefly in PBS (3 × 5min) and
incubated for 10 min in 0.3% Sudan black B dissolved in
70% ethanol to block endogenous autofluorescence by
lipofuscin, before coverslipping and mounting with VEC-
TASHEILD antifade mounting medium with DAPI (Vec-
tor Laboratories, UK).

Fig. 1 Photomicrograph illustrating the hippocampal CA2 subfield.
The CA2 region was defined as the pyramidal cell layer parallel to
the boundaries set by the ends of the granule cells of the external
limbs of the dentate gyrus
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Multiple-antigen immunofluorescence for choline
acetyltransferase, alpha-synuclein and tau
Double and triple immunofluorescence were used to in-
vestigate the relationship between αSN and/or tau path-
ology and cholinergic fibres in the hippocampus. Sections
were dewaxed and rehydrated as described in the section

above. For double staining with anti-ChAT and anti-AT8
tau antibodies, tissues were pretreated with autoclaving
(25min) in 0.01M sodium citrate buffer (pH 6). Add-
itional incubation in 80% formic acid (10min) was needed
for double staining with anti-ChAT and anti-αSN anti-
bodies. Tissue sections were then incubated with various

Fig. 2 Representative photomicrographs of semi-quantitative assessment of tau and αSN pathology. Neuritic tau and αSN burden was graded from 0
(absence to pathology) to 3 (abundant pathology) using immunostaining against AT8 tau (phospho-PHF-tau pSer202 + Thr205 tau epitope) and αSN.
Figures illustrates grading from 1 to 3. Magnification 200x for tau and 100x for αSN

Table 1 Antibodies used for immunohistochemistry and multiple-antigen immunofluorescence staining in this study

Antibody Host Clonality Immunogen Company Catalogue number Dilution Pretreatment Secondary antibody

Choline-
acetyltransferase
(ChAT)

Goat Polyclonal Human
placental
ChAT

Millipore AB144P 1:100
(IHC); 1:
50 (IF)

Pressure cooker,
0.01 M sodium
citrate buffer
(pH 6)

Alexa-Fluor® 488-conjugated
donkey anti-goat antibody

Tau (AT8;
Phospho-PHF-
tau pSer202 +
Thr205)

Mouse Monoclonal
(IgG1)

Partially
purified
human
PHF-Tau

Pierce
Thermo
Scientific

MN1020 1:100
(IF)

Nil Alexa-Fluor® 568-conjugated
or Alexa-Fluor® 647-
conjugated donkey anti-
mouse antibody

Alpha-synuclein
(Clone 42)

Mouse Monoclonal
(IgG1)/
Clone 42

Rat
Synuclein-1
aa. 15–123

BD
Transduction
Laboratories

610,787 1:100
(IF)

10 mins 80%
formic acid

Alexa-Fluor® 647-conjugated
donkey anti-mouse antibody

Tau (ps396;
phosph-tau
pSer396)

Rabbit Polyclonal Human Tau,
serine 396

Thermo
Fisher
Scientific

44752G 1:200
(IF)

Nil Alexa-Fluor® 568-conjugated
donkey anti-rabbit antibody

Abbreviations: IF, immunofluorescence; IHC, immunohistochemistry
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antibodies combinations overnight (Table 1). The remaining
protocol follows as described in the section above.
Triple Immunofluorescence was conducted for

ps396-tau, αSN and ChAT with the same protocol as the
double immunofluorescence as described above. How-
ever, a sequential staining approach was applied where
anti-ps396 tau primary and secondary antibodies were
applied on the 2nd and 3rd days after the incubation of
anti-ChAT and anti-αSN primary and secondary anti-
bodies. Pretreatment with autoclave was conducted be-
fore formic acid for optimal immunoreactivity [46].

Confocal imaging
Single and multiple immunofluorescent-stained slides
were visualised and imaged using a Zeiss LSM-780
inverted confocal microscope (Carl Zeiss, Germany) at
the Facility for Imaging by Light Microscopy (FILM) at
Imperial College London. × 10 objectives (Plan-Apo-
chromat Ph1 M27; numerical aperture, 0.45; working
distance, 2.0 mm), × 63 objective (Plan-Apochromat, oil
immersion; DIC M27; numerical aperture, 1.40; working
distance, 0.19 mm) with laser excitation at 405 nm
(Diode), 488 nm (Argon multiline), 543 nm (HeNe) and
594 nm (HeNe) were used. Image capture and process-
ing were performed using the Zen Black (Carl Zeiss,
Germany) software.

Quantification of cholinergic varicosities in the CA2
hippocampal subfield
Stained hippocampal sections were screened using a × 10
stage objectives to locate the CA2 hippocampal subfield
and quantitative assessment of ChAT-immunopositive fi-
bres was carried out under a × 63 stage objective, blinded
to the clinical diagnosis, at the region of maximal ChAT
immunoreactivity to ensure consistency of the assessment.
The full thickness of the section was imaged with
z-stacking and the maximal intensity projection was ac-
quired post-acquisition using the Zen Black software. The
image was exported and analysed using the ImagePro Plus
(Media Cybernetics, Inc., USA) image analysis software as

described in Fig. 3. A size exclusion parameter was used
(Area; range 10–150) to exclude dystrophic Lewy neurites
which were also immunopositive for ChAT. The investiga-
tor was blinded to the diagnosis of the case throughout
the whole data acquisition process.

Quantification of cholinergic neurons in the nucleus of
the vertical limb of diagonal band of Broca
ChAT-immunostained sections were visualised and im-
ages captured with a light microscope (Olympus AHBT3
VANOX) with digital camera at × 4 stage objective. Basal
forebrain cholinergic cell groups often consist of a com-
pact and diffuse sector [35]. For this reason, the area of
maximal ChAT-immunopositive cell density was cap-
tured using the ImagePro Plus software. Next, the blue
channel was extracted from the image with contrast en-
hancement. By manually adjusting the threshold of in-
tensity and size with the captured image on the side, the
number of immunopositive neurons was counted. Any
cells touching the border of the image were not included
in the quantification. Overlapping cells were manually
separated with a ‘separate cluster’ function on the pro-
gram, and non-specific staining including tissue folds
and vascular structures was manually ‘toggled-off ’.

Statistical analysis
Statistical analysis was carried out and graphs were gen-
erated using Statistical Package for the Social Sciences
(SPSS v25, IBM) and GraphPad Prism software (Version
7.02). Data in this study was not normally distributed,
hence Kruskal-Wallis and Mann-Whitney U tests were
used for comparisons of ChAT-positive neurons and var-
icosities, and tau and Lewy pathology burden among the
cases. Post-hoc pairwise analysis with Dunn’s correction
was used for multiple comparisons. Spearman’s rho was
used for correlation between ChAT-positive neuron
count in the nvlDBB and ChAT-positive varicosities in
the CA2 hippocampal region. Statistical significance is
reached when p < 0.05.

Fig. 3 Quantification of cholinergic varicosities in the CA2 hippocampal subfield. Acquired imaged from the confocal microscope (a) was
converted to monochrome by extraction of the green channel (b). The image was then colour-inverted (c) and subsequently, the percentage
area coverage of ChAT was obtained with manual thresholding on the ImagePro Plus software. Scale bar = 20 μm
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Results
Case demographics
In summary, 197 cases comprised of 67 PD, 34 PD-MCI
and 96 PDD cases were selected for this study. All cases
were matched in age at death, disease duration, and
Braak αSN and tau stages (Table 2). There was no sig-
nificant difference in the post-mortem interval between
different cohorts (range 24.7–26.6 h).

Burden of Lewy and tau pathology in the hippocampal
CA2 subfield in PD cases
Semi-quantitative assessment of Lewy and tau patholo-
gies were performed on diagnostic hippocampal sections.
However, 7 diagnostic slides for tau analysis and 9 for
αSN analysis had to be excluded due to poor tissue qual-
ity and the difficulty in accurately identifying the CA2
subfield. There was no difference in CA2 tau burden
among PD cases with differing degrees of cognitive def-
icit, although a trend towards a higher burden in demen-
ted cases could be seen (Fig. 4a). In terms of αSN
pathology, PDD cases had a significantly higher αSN
burden compared with PD-MCI (p = 0.0074) and PD
cases without cognitive deficits (p < 0.0001) (Fig. 4b). It
was interesting to note that 169 cases (89.9%) had at
least some αSN pathology in the hippocampal CA2 sec-
tor and among those without any known cognitive def-
icit, only 12 (19.0%) had absence of any Lewy pathology.
Correlation analysis revealed no significant correlations
between duration of disease and hippocampal CA2 tau
(Spearman rho = − 0.059; 2-tailed p = 0.421) or αSN
(Spearman rho = 0.135; 2-tailed p = 0.065) pathology.

Anterior basal forebrain and hippocampal cholinergic
depletion in Parkinson’s disease
Cases with tissue sections containing the nvlDBB at the
coronal level just anterior to the anterior commissure
decussation were obtained and immunostained for
ChAT for the quantification of cholinergic neurons.
Since the nvlDBB was not a routinely sampled area at
the tissue bank, only 8 PD, 4 PD-MCI and 16 PDD cases
with representative anterior basal forebrain section and

suitable hippocampal sections were available for this part
of the study (Table 3). Cases were matched for age, dis-
ease duration and pathological staging as above. Al-
though no significant difference in mean ChAT-positive
neuronal count was detected, a trend for a step-wise de-
crease in neuronal density could be seen with increasing
cognitive deficit (Fig. 4c).
Hippocampal sections of the selected cases were also im-

munostained for ChAT for the quantification of cholinergic
varicosities within the CA2 subfield. A significant decrease
in ChAT-positive varicosities was found in PD-MCI (p=
0.0275) and PDD (p= 0.0207) cases compared with PD
cases with no cognitive impairment (Fig. 4d, Fig. 5). How-
ever, it was important to note that there was a large variabil-
ity in PD cases without cognitive deficits. There was a small
but significant correlation between changes in
ChAT-positive varicosities in the CA2 subfield and changes
in cholinergic neuronal density within the Ch2 (Spearman’s
rho = 0.3887; two-tailed p= 0.0409) (Fig. 4e). However, we
identified an outlier in ChAT-immunopositive varicosity
density (box, Fig. 4e) as it falls over 2.5 standard deviations
from the mean value (1.465%). With the outlier ex-
cluded, a moderate correlation was seen (Spearman’s
rho = 0.4183; two-tailed p = 0.0299). No correlation be-
tween ChAT-positive varicosities in the CA2 and αSN
burden (Spearman’s rho = − 0.09; p = 0.664) or tau
burden (Spearman’s rho = 0.004; p = 0.986) was found.

Colocalisation of Lewy pathology and cholinergic
varicosities in the CA2 hippocampal subfield
To investigate the relationship between cholinergic fi-
bres and aggregated protein pathology in the CA2 hip-
pocampal subfield, hippocampal sections of 1 PD and 1
PDD case with high tau and αSN burden and a long dis-
ease duration (19 and 20 years, respectively) were double
or triple immunostained for ChAT, αSN and tau. A
strong relationship between αSN and ChAT was found
with double immunofluorescence (Fig. 6). Nearly all
αSN was found to colocalise with ChAT, while not all
ChAT fibres colocalise with αSN. Neuritic processes
demonstrating colocalised with ChAT and αSN had

Table 2 Patients demographics for CA2 αSN and tau burden study

Diagnosis PD PD-MCI PDD

n 67 34 96

M:F (% M) 40:27 (59.7%) 20:14 (58.8%) 68:28 (70.8%)

Mean age at onset (SD) 65.06 (8.75) 62.91 (11.97) 64.81 (10.49)

Mean age at death (SD) 77.34 (6.92) 76.85 (8.32) 78.03 (7.39)

Mean duration of disease (SD) 12.36 (6.38) 14.09 (6.52) 13.28 (6.44)

Mean post-mortem interval (hours) 24.67 26.56 25.15

Median Braak αSN stage 6 6 6

Median Braak tau stage 2 2 2
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Fig. 4 CA2 hippocampal subfield proteinaceous pathology burden and septohippocampal cholinergic deficit in PD with varying degrees of
cognitive deficit. Scatter plots comparing tau (a) and αSN (b) pathology in PD, PD-MCI and PDD. Note that 7 diagnostic slides for tau analysis and
9 for αSN analysis had to be excluded due to poor tissue quality and the difficulty in accurately identifying the CA2 subfield. Error bars showing
mean ± SEM. Box-and-whiskers plots comparing nvlDBB (Ch2) mean cholinergic neuron count (c) and CA2 ChAT-positive varicosities (d) between
PD, PD-MCI and PDD cases. Correlation scatter graph showing the relationship between Ch2 mean cholinergic neuronal count and CA2
hippocampal subfield ChAT-positive varicosity (e). An outlier was observed and is indicated by a box. *p < 0.05; **p < 0.01; ****p < 0.0001
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morphology comparable to Lewy neurites. in areas
where the load of αSN was low, the morphology of
ChAT-positive fibres was not altered. In contrast, double
immunofluorescence for ChAT and tau showed minimal
or no colocalisation within the hippocampal CA2 sub-
field. It was observed that tau neuropil threads are
wrapped around ChAT-positive fibres but no direct
overlap between the two was found. Subsequently triple
immunofluorescence staining further demonstrated large
ChAT-positive neurites almost exclusively colocalised
with αSN but not tau (Fig. 7). Colocalisation between all
three staining was also observed, suggesting there may
be a synergistic relationship between different patho-
genic proteins.

Discussion
This study supports the hypothesis that pathology within
the hippocampal CA2 subfield contributes to cognitive
decline in pure PD cases with no or minimal co-existing
Alzheimer’s pathology. In particular, a high burden of
Lewy pathology differentiated cases with dementia from
those without. In addition, the loss of CA2 cholinergic
fibres appeared to be a more sensitive marker as it dis-
tinguished PD cases with cognitive impairment from
cases with no reported cognitive deficit. The significant
association of a high density of hippocampal CA2 Lewy
pathology with dementia in PD was consistent with

previous observations [33, 47]. In a post-mortem study
by Churchyard and Lees, significantly higher densities of
Lewy pathology were only found in PD cases with severe
dementia but not mild to moderate dementia [17]. Simi-
larly, in the current study, we found that only in cases
with dementia but not those with PD-MCI had a signifi-
cantly higher degree of Lewy neurite burden, suggesting
the deposition of Lewy pathology in the CA2 hippocam-
pal subfield may be the end-stage process in cognitive
decline in PD. However, it is important to note that even
cases with no cognitive impairment can have some de-
gree of αSN deposition. Hence, CA2 Lewy pathology
alone is not sufficient in the diagnosis of PDD. Similar
to the findings in DLB cases [22], we found no signifi-
cant association between neuritic tau burden and de-
mentia in PD, supporting the hypothesis that PDD and
DLB lie in the same disease spectrum [31]. Although our
group previously reported significant association be-
tween CA2 tau burden and PDD [47], the current study
only showed a trend increase in tau pathology in PDD
cases. This may be due to the difference in the assess-
ment of tau pathology as the current study used neuritic
tau burden rather than overall tau burden (neurofibril-
lary tangle + neurites) following the currently recom-
mended criteria for the assessment of tau pathology
outlined by BrainNet Europe [3]. In addition, the criteria
for the neuropathological diagnosis of AD have been

Table 3 Patients demographics for Ch2 cholinergic neuronal count and hippocampal CA2 cholinergic varicosity quantification

Diagnosis PD PD-MCI PDD

n 8 4 16

M:F (% M) 4:4 (50%) 3:1 (75%) 13:3 (81.3%)

Mean age at onset (SD) 62.13 (8.68) 62.25 (13.72) 65.31 (12.40)

Mean age at death (SD) 73.50 (5.90) 81.00 (8.04) 78.19 (5.97)

Mean duration of disease (SD) 11.38 (5.71) 19.00 (5.72) 12.81 (8.30)

Mean post-mortem interval (hours) 31.00 14.00 27.63

Median Braak αSN stage 6 6 6

Median Braak tau stage 1 2 2

Fig. 5 Representative photomicrographs of ChAT terminal immunofluorescence in the hippocampal CA2 in PD, PD-MCI and PDD cases. Images
acquired using confocal microscope at ×63 magnification. Scale bar = 20 μm
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revised in recent years, meaning the cases selected from
the earlier study may have a higher degree of co-existing
AD pathology which would have been excluded in the
current study.
The presence of hippocampal dopaminergic innerv-

ation has been extensively reported in rodents [60].
However, monoaminergic fibres were reported to be ab-
sent in the human hippocampal CA2/3 subfields using
immunostaining with anti-tyrosine hydroxylase anti-
bodies in DLB cases and controls [22]. By contrast, sep-
tohippocampal cholinergic innervation appeared to be
preserved in humans as ChAT-immunopositive fibres
and acetylcholinesterase staining were found in the
hippocampus of aged brains, with highest density in the
CA2 subfield [42, 64]. Using acetylcholinesterase histo-
chemistry, it was previously reported that AD cases had
a reduction in staining throughout the hippocampus
with varying levels of enhancement found in different
layers in the hippocampus, suggestive of sprouting of
acetylcholinesterase terminals following neurodegeneration
in the adjacent entorhinal cortex [42]. For PD, a significant
degree of cholinergic depletion in the hippocampus was
found in PDD cases when compared with PD and controls
using ChAT activity radio-enzymatic assay on hippocampal
brain homogenates [33]. However, specific changes in hip-
pocampal cholinergic innervation were not studied. In the
present study, we focussed on the CA2 hippocampal

subfield and found significant cholinergic depletion not
limited to PDD but also PD-MCI cases, when compared
with PD cases without reported cognitive impairment. This
suggests that there is a failure of cholinergic activity in ad-
vance of αSN deposition in the CA2 region, leading to the
clinical progression to dementia. This is supported by
pharmacological studies showing an improvement of ob-
jective cognitive measures in PD patients with cognitive im-
pairment on cholinesterase inhibitors, irrespective of
whether or not they have a diagnosis of dementia [1, 51].
Interestingly, we observed that there was great variation in
cholinergic fibre densities within PD cases with no cogni-
tive impairment, with some having low densities matching
that of PDD and PD-MCI cases. This observed variability
suggests that there may be compensatory aborisation of
surviving cholinergic neurons, at least in a subset of PD
cases without cognitive deficits. It can also be explained by
the heterogeneity observed in clinical phenotypes, with pre-
vious studies reporting non-tremor dominant PD subtype
or those with more prominent axial symptoms are more
prone to progression to dementia [28, 65]. In future studies,
it will be important to investigate if differing PD subtypes
have varying baselines of cholinergic supply leading to an
earlier or later presentation of cognitive symptoms.
Recent advancement in neuroscience techniques has led

to better understanding of the precise function and con-
nectivity of various hippocampal subfields. In particular,

Fig. 6 Double immunofluorescence staining between ChAT and αSN or tau. Post-acquisition image processing was performed to enhance the
contrast of the images. On the top, double immunofluorescence staining with ChAT (green) and αSN (red) showed near complete co-localisation
(yellow). Some ChAT-positive neuronal fibres had sparing of αSN pathology (white arrows). At the bottom, double immunofluorescence staining
with ChAT (green) and AT8 tau (red) only had minimal colocalisation (white arrowheads). Insets showing co-localisation in higher magnification.
Scale bars = 20 μm
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there has been a resurgence of interest in the CA2 region
as its molecular signature was recently established in de-
tail, distinguishing itself from the neighbouring CA1 and
CA3 subfields [16, 24]. Selective vulnerability of hippocam-
pal subfields has been reported in many neurological disor-
ders. Neuronal loss were reported in the CA1 in AD [13];
CA2 in schizophrenia, bipolar disorder [11] and CA3 in
stress-related conditions such as post-traumatic stress dis-
order, recurrent depression and Cushing’s syndrome [57].
In neurodegenerative conditions, specific subfield pre-

dilections have also been seen in aggregated protein
pathology [7]. In AD, neurofibrillary tangles were prefer-
entially found in the CA1 subfield [41] and they were
found to correlate with neuronal loss and severity of
cognitive impairment [13]. In DLB cases, Lewy patholo-
gies were highest in CA2 and the entorhinal region.
However, only CA1 burden correlates with cognitive de-
cline using formal cognitive assessment [2]. In addition,
it appeared that CA1 pathology could only be found in
cases with pathology in the CA2 subfield, suggesting a
possible hierarchical pattern of Lewy pathology spread
in the hippocampus [2]. Hippocampal CA1 subfield is
important for memory formation as specific bilateral CA1
lesion produced an amnesic syndrome [68]. Although

memory deficit features in both DLB and AD, detectable
memory impairment is normally apparent at a later stage
in DLB [58], consistent with findings in previous studies.
Similar to DLB, the CA2 subfield was also most affected
in PDD cases with the greatest density of Lewy body, Lewy
neurite and Lewy grain pathologies compared with other
hippocampal and cortical regions [8]. Memory complaints
were present in two-third of all PDD patients, but typically
retrieval rather than storage and encoding memory (as
seen in AD) was more affected. Also, in PDD, memory
typically improves with cueing [27]. Owing to the specifi-
city of αSN pathology deposition in Lewy body disease, it
could be speculated that the CA2 subfield contributes to
retrieval memory function to a certain extent. A recent
study that investigated the different amnestic profiles be-
tween AD and PDD patients found free and cued memory
recall was significantly impaired in both dementia groups
but only PDD improves with total recall (with cueing).
The authors attributed the difference in cognitive per-
formance to structural and connectivity changes seen with
magnetic resonance imaging (MRI) and diffuse tensor im-
aging (DTI) in CA1, CA4-DG and subiculum hippocam-
pal subfields in AD, and the CA2–3 and presubiculum
regions in PDD [61]. Similar observations were reported

Fig. 7 Triple immunofluorescence staining between ChAT (green), αSN (magenta) and pS396 tau (red). DAPI (blue) was also shown in combined
image. A high degree of colocalisation between ChAT and αSN was observed and pS396 tau did not seem to colocalise with ChAT or αSN. Insets
showing co-localisation in higher magnification. Scale bar = 20 μm
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in an 18-month longitudinal MRI study on PD patients,
which CA2–3 atrophy was found in patients converted to
PDD compared with PD patients that remained cogni-
tively unaffected [29]. These findings mirror the significant
pathology we observed in the CA2 region of PD cases
with cognitive impairment.
The connectivity of CA2 has been well described in

rodents. Pyramidal neurons within the CA2 are the
major output neurons to the CA1 and CA3 and they re-
ceive excitatory glutamatergic input from dentate gyrus
and entorhinal cortex. They also receive input from
other subcortical regions including the medial septum/
diagonal band, amygdala and hypothalamic nuclei. Thus,
the CA2 was thought to be the integrating hub for cog-
nitive and emotional functions [16]. In fact, rodent stud-
ies demonstrated the CA2’s role in social recognition
memory and spatial processing [24], domains not for-
mally assessed with standard cognitive assessments. The
mechanism behind this remained to be discovered, but
one study found that CA2 activity pattern changes over
time despite surrounding spatial environment remains
the same [55]. This suggests that CA2 may have import-
ant role in episodic memory, which is required for social
memory formation. Whilst mood disturbance can be ex-
plained by CA2 neuronal loss in schizophrenia and bipo-
lar cases [11], significant hippocampal subfield atrophy
was not found in pure PD or DLB cases [36]. From our
preliminary observations, it appeared that Lewy path-
ology in the CA2 exclusively affects cholinergic fibres in
PD cases as found in the current study. Previously, the
presence of acetylcholinesterase-positive neuritic plaque
was found in the subiculum-CA1 area in AD cases [42].
In PD, colocalisation of Lewy bodies and ChAT-immu-
nopositive neurons or neurites were found in the nbM
and the pedunculopontine nucleus (PPN) and amygdala
[25]. LB-infested neurons had a reduction of ChAT
immunoreactivitiy, leading to the speculation that Lewy
pathologies may disrupt cholinergic neurotransmission
by the sequestration of ChAT enzyme [25]. To our
knowledge, this is the first study to report specific colo-
calisation of Lewy neuritic pathology with ChAT-immu-
nopositive fibres within the CA2 hippocampal subfield,
although further studies using other antibodies that rec-
ognise misfolded αSN will be required to confirm the
colocalisation of pathological αSN in cholinergic termi-
nals. We therefore hypothesise that Lewy pathology-re-
lated cholinergic degeneration can lead to cognitive
impairment in PD cases, through mechanisms as sug-
gested above that pathology in the CA2 subfield may
contribute to retrieval memory deficits in PD patients.
In addition, we found CA2 cholinergic fibre depletion sig-
nificantly correlated with the degeneration of cholinergic
neurons in the nvlDBB. Although not established in pri-
mates, anterograde and retrograde tracer experiments

using modified viral vector in mice has identified recipro-
cal connections between the medial septal nucleus-
nvlDBB and CA2 [19]. A prion-like spread of αSN aggre-
gation has been proposed to happen in interconnected
regions [14]. Collectively, this supports the role of a hypo-
thetical connection between CA2 and Ch2, where
CA2-subregional Lewy pathology could have led to retro-
grade neurodegeneration of the cholinergic cells in
nvlDBB, leading to dementia in PD.
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