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Abstract

Background: The histological hallmark of multiple system atrophy (MSA) is the presence of filamentous aggregations
of phosphorylated a-synuclein in oligodendrocytes, referred to as glial cytoplasmic inclusions (GCls). Although GCls can
occur widely in the central nervous system, accumulation of phosphorylated a-synuclein in Schwann cells has not been
reported in MSA. We immunohistochemically examined the cranial and spinal nerves, peripheral ganglia and visceral
autonomic nervous system of patients with MSA (n = 14) and control subjects (n = 20).

Results: In MSA, accumulation of phosphorylated a-synuclein was found in the cytoplasm of Schwann cells. These
Schwann cell cytoplasmic inclusions (SCCls) were also immunopositive for ubiquitin and p62. SCCls were found in 12 of 14
patients with MSA (85.7 %). They were most frequent in the anterior nerve of the sacral cord and, to a lesser extent, in
the cranial nerves (oculomotor, glossopharyngeal-vagus and hypoglossal nerves), and spinal and sympathetic ganglia.
SCCls were rarely found in the visceral organs. Immunoelectron microscopy demonstrated that the SCCls consisted of

Ultrastructure

abnormal filaments, 15-20 nm in diameter. No such inclusions were found in controls.
Conclusion: The present findings indicate that Schwann cells are also involved in the disease process of MSA.
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Introduction

Multiple system atrophy (MSA) is an adult-onset neuro-
degenerative disorder manifested clinically as a combin-
ation of parkinsonism, cerebellar ataxia and autonomic
dysfunction. MSA is now divided into two clinical
subtypes: MSA with predominant parkinsonian features
(MSA-P) and MSA with predominant cerebellar dysfunc-
tion (MSA-C) [1]. MSA is characterized pathologically by
any combination of coexisting olivopontocerebellar atro-
phy, striatonigral degeneration and preganglionic
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autonomic lesions [2]. The histological hallmark of MSA
is widespread glial cytoplasmic inclusions (GClIs) in the
central nervous system [3-6]. These GCIs can be visual-
ized by silver staining such as the Gallyas-Braak method
[3], and ultrastructurally they consist of granule-
associated filaments 20—30 nm in diameter (3, 4, 7]. The
major component of GClIs is a-synuclein [8], which is
phosphorylated at Serine 129 [9] and ubiquitinated [10].
Although primary oligodendroglial pathology is the
main feature of MSA [11-13], accumulation of phos-
phorylated a-synuclein is also consistently found in the
neuronal cytoplasm, processes and nuclei [14]. Similar
neuronal inclusions are found less frequently in the
peripheral sympathetic ganglia [13, 15].
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Although immunoreactivity of non-phosphorylated
a-synuclein has been reported in normal and neoplas-
tic Schwann cells in the peripheral nervous system of
humans [16], accumulation of phosphorylated «a-synuclein
in Schwann cells of patients with MSA has not been
described hitherto. Here we immunohistochemically
examined the cranial and spinal nerves, peripheral ganglia
and visceral autonomic nervous system of patients
with MSA using antibodies against phosphorylated
a-synuclein, and report for the first time that
Schwann cells in these patients are also affected by fila-
mentous aggregations of phosphorylated o-synuclein.

Materials and methods

Subjects

Thirty-four autopsy cases were included in this study. Four-
teen of the patients (age 49-79 years, average = 64.6 years)
had a clinical history of MSA, which was confirmed at aut-
opsy by the presence of numerous GCIs (Table 1). All of
the MSA cases lacked Lewy body pathology. The clin-
ical and neuropathological features of early MSA (cases
2 and 12) have been reported previously [17, 18].
Twenty patients used as controls (age 40-84 vyears,
average = 70.0 years) were clinically and histopatho-
logically free of neurodegenerative disease. This study
was approved by the Institutional Ethics Committee of
Hirosaki University Graduate School of Medicine.

Immunohistochemistry

Immunohistochemical analysis was carried out using
formalin-fixed, paraffin-embedded, 4-um-thick sections
from the midbrain, upper pons, medulla oblongata,
spinal cord (cervical, thoracic, lumbar and sacral seg-
ments), and dorsal root and paravertebral sympathetic
ganglia. Oculomotor and trigeminal nerves were exam-
ined at the level of the midbrain and upper pons,
respectively. Glossopharyngeal and vagus nerves were
examined at the level of the dorsal vagal nucleus. Since
it was difficult to differentiate glossopharyngeal nerve
from vagus nerve on the sections, these two nerves were
described as a whole. Hypoglossal nerves were examined
at the level of the gracile nucleus. Paraffin sections were
also cut from block samples of the esophagus, stomach,
small intestine, colon, heart, lung, thyroid, liver,
pancreas, kidney, adrenal gland and urinary bladder. The
sections were subjected to immunohistochemical pro-
cessing using the avidin-biotin-peroxidase complex
method with diaminobenzidine as the chromogen. The
primary antibodies used were mouse monoclonal anti-
bodies against phosphorylated a-synuclein (#64; Wako,
Osaka, Japan; 1:5,000), aggregated a-synuclein (5G4; EMD
Millipore, Temecula, CA, USA; 1:1,000) [19] and ubiquitin
(1B3; MBL, Nagoya, Japan; 1:2,000), rabbit monoclonal
antibody against phosphorylated o-synuclein (EP1536Y;
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Abcam, Cambridge, UK; 1:5,000), and rabbit polyclonal
antibody against p62 (MBL; 1:1,000). #64 is a monoclonal
antibody against a synthetic peptide corresponding to
amino acid residues 124—134 of human «-synuclein with
a phosphorylated Serine 129 residue. EP1536Y is also a
monoclonal antibody against a synthetic peptide corre-
sponding to residues surrounding phosphorylated Serine
129 of human a-synuclein.

In addition to routine immunohistochemical tech-
niques, selected sections from the spinal cord of MSA pa-
tients were first stained using the modified Gallyas-Braak
method [20]. The spinal nerve roots were observed under
a x40 objective lens. After removing the cover glasses
from the slides using xylene, the specimens were decol-
orized in alcohol, then immunostained with anti-
phosphorylated a-synuclein (Wako; 1:5,000). The spinal
nerve roots were then observed again under a x40
objective lens.

Semiquantitative assessment of inclusions in Schwann
cells was performed in each region by anti-phosphorylated
a-synuclein immunolabeling. The numbers of inclusions
were estimated as: —, none; +, 1 to 5 inclusions; ++, >5
inclusions.

Double immunostaining

To characterize the inclusion-bearing cells, anti-S-100
was used as a marker of Schwann cells [21], anti-tubulin
polymerization promoting protein (TPPP)/p25a as a
marker of oligodendroglia [22], and anti-phosphorylated
neurofilament as a marker of axons [23]. TPPP/p25« is
also known to be a component of GCIs in MSA [24].
Double immunofluorescence analysis was also per-
formed to detect overlapping expression of phosphory-
lated a-synuclein and ubiquitin. Paraffin sections from
the spinal cord of patients with MSA (n = 3) were proc-
essed for double-label immunofluorescence. Deparaffi-
nized sections were blocked with donkey serum and
then incubated overnight at 4 °C with a mixture of the
monoclonal anti-phosphorylated «-synuclein (Wako;
1:500) and polyclonal anti-S-100 (DAKO, Tokyo, Japan;
1:500), anti-TPPP/p25a (Sigma-Aldrich Japan, Tokyo,
Japan; 1:500) or anti-ubiquitin (DAKO; 1:200), or a
mixture of the mouse monoclonal anti-phosphorylated
neurofilament (SMI31; Cosmo Bio, Tokyo, Japan; 1:500)
and rabbit monoclonal anti-phosphorylated a-synuclein
(Abcam; 1:500). The sections were then rinsed and incu-
bated for 1 h at 38 °C with anti-rabbit IgG tagged with
Alexa Fluor 488 (Invitrogen, Carlsbad, CA, USA; 1:200)
and anti-mouse IgG tagged with Alexa Fluor 594 (Invi-
trogen; 1:200), or anti-rabbit IgG tagged with Alexa
Fluor 594 (Invitrogen; 1:200) and anti-mouse IgG tagged
with Alexa Fluor 488 (Invitrogen; 1:200). The sections
were examined using an Olympus BX63 fluorescence
microscope (Olympus, Tokyo, Japan).



Table 1 Summary of clinical findings of patients with multiple system atrophy (MSA)

Case  Ageat Gender  Disease Clinical Pathological  Initial symptoms Symptoms
No. death (years) duration (years)  diagnosis diagnosis Parkinsonian ~ Cerebellar OH  UD  Constipation  Dyshidrosis  Impotence
signs signs
1 49 F 7 MSA-P MSA-P limping + - -+ o+ + -
2 57 F 1 spinocerebellar ~ MSA-C ataxia - + - - - - -
degeneration
3 58 M 7 SDS MSA-C UD, constipation, + + + + + - +
impotence
4 61 M 7 MSA-P MSA-P ub + + - + + - -
5 61 F 4.5 MSA-P MSA-P tremor + + - + + - -
6 63 F 3 MSA-P MSA-P gait disturbance + - + + - - -
7 65 M 7 MSA-C MSA-C gait disturbance + + - + + - -
8 65 M 14 MSA-C MSA-P gait disturbance + + + + - - -
9 66 M 9 SDS MSA-P ub + + + + + - -
10 66 M 13 MSA-C MSA-C sensory disturbance  + + + + + - -
11 69 M 8 SDS MSA-C snoring - + + + + - -
12 71 F <1 neurologically MSA-C none - - - - - - -
normal
13 75 M 8 progressive MSA-P gait disturbance + + + + - - -
supranuclear
palsy
14 79 M 4 SDS MSA-C unsteady gait - + + + - - -

OH, orthostatic hypotension; UD, urogenital dysfunction; SDS, Shy-Drager syndrome; +, present;—, absent
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Immunoelectron microscopy

The anterior spinal nerve roots from a case of MSA
(case 1) were processed for immunoelectron micros-
copy. Fifty-micrometer-thick vibratome sections were
cut from the formalin-fixed tissue. The sections were in-
cubated with a rabbit monoclonal anti-phosphorylated
a-synuclein antibody (Abcam; 1:500), followed by incu-
bation with a biotinylated secondary anti-rabbit IgG
(Vector, Burlingame, CA, USA; 1:200) and avidin-
biotin-peroxidase complex (Vector; 1:200), and the
reaction was developed with diaminobenzidine. The
immunolabeled sections were post-fixed in 1 % glutaral-
dehyde and 1 % osmium tetroxide, dehydrated in etha-
nol, and then embedded in Poly/Bed 812 resin
(Polysciences, Inc.,, Warrington, PA, USA). Ultrathin
sections were cut and viewed with a JEOL1230 electron
microscope (JEOL Ltd., Tokyo, Japan).

Results

Morphology and immunohistochemical features
Immunostaining with anti-phosphorylated and anti-
aggregated a-synuclein antibodies as well as the modified
Gallyas-Braak method demonstrated widespread occur-
rence of GCIs throughout the brain and spinal cord of pa-
tients with MSA, but not in control subjects. The
immunostaining with two monoclonal anti-phosphorylated
a-synuclein antibodies and a monoclonal anti-aggregated
a-synuclein antibody revealed Schwann cell cytoplasmic in-
clusions (SCClIs) in the cranial and spinal nerves, peripheral
ganglia and visceral autonomic nervous system of MSA pa-
tients (Fig. 1a—q). They appeared crescent-shaped, coil-like,
or cigar-shaped (Fig. 1d—f). The SCClIs enveloped the axons
(Fig. 1g) and extended their processes from the cytoplasm
to the axons (Fig. 1h, i). Similar inclusions were detected
with anti-ubiquitin and anti-p62 antibodies (Fig. 1r, s). The
inclusions could not be visualized with hematoxylin and
eosin, Kliver-Barrera or Bodian’s method. GCls appeared
argyrophilic with the modified Gallyas-Braak method,
whereas SCClIs were stained only weakly or partially (Fig. 1t,
u). No such inclusions were found in controls.

To further characterize the inclusion-bearing cells, anti-
S-100 was used as a Schwann cell marker, anti-TPPP/
p25a as an oligodendroglia marker, and phosphorylated
neurofilament as an axon marker. Double immunofluores-
cence analysis revealed co-localization of phosphorylated
a-synuclein and S-100 (Fig. 2a—c), but not TPPP/p25a
(Fig. 2d—f) or phosphorylated neurofilament (Fig. 2g—i), in
the inclusions. Phosphorylated a-synuclein and ubiquitin
were also co-localized in the inclusions (Fig. 2 j-1).

Immunoelectron microscopy

Pre-embedding immunoelectron microscopy demonstrated
phosphorylated a-synuclein-immunoreactive structures in
the cytoplasm of Schwann cells (Fig. 3a). The SCClIs
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consisted of randomly arranged, loosely packed, granule-
coated fibrils, approximately 15-20 nm in diameter
(Fig. 3b). Immunodeposition was also detected in the outer
and inner loops of the myelinated axons, where fibril for-
mation was not apparent (Fig. 3c).

Distribution and incidence

The distribution and semiquantitative assessment of
SCCIs in patients with MSA are summarized in Table 2.
SCCIs were present in the cranial nerves (oculomotor,
glossopharyngeal-vagus and hypoglossal nerves) and the
spinal nerve roots. In the spinal nerve roots, SCCIs were
found in the anterior nerves at the levels of the cervical,
thoracic, lumbar and sacral segments, as well as in the
posterior nerves in all the segments, except at the cervical
level. They were also seen in the dorsal root and sympa-
thetic ganglia and visceral autonomic nervous system.

SCCIs were found in 12 of 14 patients with MSA
(85.7 %). They were most frequent in the anterior nerves
of the sacral cord (69.2 %) and tended to be more fre-
quent in the anterior than in the posterior nerves at each
level. In one case of MSA (case 1), we examined the
proximal and distal portions of the sacral nerve roots,
and found that SCCIs were more numerous in the prox-
imal than in the distal portion. In the cranial nerves, the
inclusions were more frequent in the glossopharyngeal-
vagus nerves (46.2 %) than in the oculomotor (28.6 %)
and hypoglossal (9.1 %) nerves. SCCIs were found in
66.7 % and 33.3 % of the dorsal root and sympathetic
ganglia, respectively. A small number of SCCIs were also
found in the visceral organs in 2 of 14 patients with
MSA (14.3 %): the subserosal nerves of the stomach in
one patient (case 1) and the adrenal gland and urinary
bladder in the other (case 12). There appeared to be no
relationship between the frequency of SCCIs and the dis-
ease duration or clinical phenotype (MSA-C vs MSA-P) of
patients with MSA.

Several neuronal cytoplasmic inclusions were found in
the dorsal root ganglia in 2 of 9 MSA patients (cases 5
and 13) (Fig. 1v, w). No such inclusions were found in
the sympathetic ganglia or visceral organs.

Discussion

In the present study, we have demonstrated for the first
time that phosphorylated a-synuclein accumulates in the
cytoplasm of Schwann cells in patients with MSA. These
SCCIs were also immunopositive for aggregated a-synuclein,
ubiquitin and p62, a ubiquitin- proteasome system-related
protein. Thus, the immunohistochemical profile of SCCls is
similar to that of GClIs [3, 7, 9, 19, 25]. Ultrastructurally,
SCCIs were composed of randomly arranged, loosely packed,
granule-coated fibrils, approximately 15-20 nm in diam-
eter. Both GClIs and neuronal cytoplasmic inclusions also
consisted of granule-coated fibrils, approximately 20—
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Fig. 1 Schwann cell (a-u) and neuronal (v, w) cytoplasmic inclusions stained with anti-phosphorylated a-synuclein (a, b, d-q, u-w), anti-aggregated
a-synuclein (c), anti-ubiquitin (r), anti-p62 (s) and the Gallyas-Braak method (t). a-i Schwann cell cytoplasmic inclusions (SCCls) (arrowheads) in the
anterior spinal nerve roots. SCCls displaying crescent-shaped (d), coil-like (e), or cigar-shaped morphology (f). SCCls enwrapping the axons (g). SCCls
extending their processes to the axons (h, i). j=1 SCCls in the oculomotor (j), glossopharyngeal-vagus (k) and hypoglossal (I) nerves. m and n SCCls in
the dorsal root (m) and sympathetic (n) ganglia. o—q SCCls in the stomach (o), adrenal grand (p) and urinary bladder (q). r and s SCCIs showing
immunopositivity for ubiquitin (r) and p62 (s). t and u Sequential staining of the same sections of the spinal nerve with Gallyas-Braak (t) and
anti-phosphorylated a-synuclein (u). SCCls (arrowheads) are only weakly or partially stained with the Gallyas-Braak method. v and w Neuronal
cytoplasmic inclusions in the dorsal root ganglia. Immunostaining with anti-phosphorylated a-synuclein antibodies (#64 for a, e, g—q, u-w; and
EP1536Y for b, d, f). Bars =50 um in a-¢; 10 um in d-w
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TPPP/p25a.

Fig. 2 Double immunofluorescence staining of Schwann cell
cytoplasmic inclusions. Co-localization of phosphorylated a-synuclein
(p-a-Syn) and S-100 (a—c), but not TPPP/p25a (d—f) or phosphorylated
neurofilament (p-NF) (g-i), in the inclusions. p-a-Syn and ubiquitin
(UBQ) are also co-localized in the inclusions (j-I). P-a-Syn (a, d, g, j)
appears red, S-100 (b), TPPP/p25a (e), p-NF (h) and UBQ (k) appear
green, and overlap of S-100 or UBQ and p-a-Syn (c, I) appears

yellow. Bars =10 um

30 nm in diameter [3, 4, 7, 26—-28]. These findings indicate
that Schwann cells are also involved in the disease process
of MSA.

SCCIs were found in 12 of 14 patients with MSA
(85.7 %) in the present study. GCIs were consistently
found in the brainstem and spinal cord in all of the
MSA patients. By contrast, SCCIs were not observed in
the cranial or spinal nerves in three patients (cases 2, 12
and 14), two of whom had early MSA [17, 18]. These
findings suggest that the occurrence of GCls precedes
that of SCCIs in MSA.

Recently, expression of human a-synuclein has been
reported in Schwann cells ensheathing the nerve fibers
of the urinary bladder in a transgenic mouse model of
MSA showing oligodendroglial overexpression of human
a-synuclein under the control of the proteolipid protein
promoter [29]. Urodynamic analysis revealed a less effi-
cient and unstable urinary bladder in this MSA mouse
model. In human MSA, widespread occurrence of GClIs
in the central nervous system is a cardinal pathological

Fig. 3 Immunoelectron microscopy of Schwann cell cytoplasmic
inclusions in the spinal nerve roots. a Phosphorylated a-synuclein-
immunoreactive structures in the cytoplasm of Schwann cells.

b A higher-magnification view of the area indicated by the black
asterisk in (). The inclusion showing granule-coated fibrillary structures,
about 15-20 nm in diameter. Anti-phosphorylated a-synuclein
antibody labels filamentous and granular structures. ¢ A higher-
magnification view of the area indicated by the white asterisk in
(@). Phosphorylated a-synuclein-immunoreactive structures are
evident in the outer (black arrowheads) and inner loops (white
arrowheads) of Schwann cells. M, myelin; Ax, axon. Bars=1 um

feature [3-6]. Moreover, neuronal cytoplasmic and
nuclear inclusions have been observed in the inferior
olivary and pontine nuclei, substantia nigra, putamen
and cerebral cortex in patients with MSA [14, 28]. Fila-
mentous aggregates of a-synuclein are also found in
neurons in the sympathetic ganglia [14, 15]. In the
present study, we further demonstrated that accumula-
tion of phosphorylated a-synuclein occurs in the neur-
onal cytoplasm in the dorsal root ganglia. Sural nerve
biopsy from patients with MSA shows a 23 % reduction
of unmyelinated fibers (sensory afferent fibers and post-
ganglionic sympathetic fibers) [30]. Mild degeneration of
cardiac sympathetic nerves can occur in MSA [31].
Thus, MSA is a glio-neuronal a-synucleinopathy involv-
ing the central and peripheral nervous systems.

It is noteworthy that SCClIs tend to be more frequent in
the peripheral nerves associated with autonomic func-
tion, i.e. glossopharyngeal-vagus nerves, and anterior
spinal nerves of the thoracic and sacral cord. The vagus
nerve is a mixed cranial nerve containing axons of bran-
chiomeric motor neurons, parasympathetic pregangli-
onic fibers, visceral afferent fibers, and somatic sensory
afferent fibers. The glossopharyngeal nerve is related
closely to the vagus nerve, sharing common medullary
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Table 2 Distribution and frequency of Schwann cell cytoplasmic inclusions (SCCls) in patients with multiple system atrophy

Case No. Cranial nerves Spinal nerves DRG SG  Visceral organs
C T L S
Il Voo XX XA P A A P A
1 NE -+ + NE NE + + -+ NE  NE  + (stomach)
2 _ - _ - _ _ _ _ _ _ _
3 - NE + -+ - - - + -+ + + - -
4 - -+ NE NE NE + - + -+ - NE NE -
5 + NE - - -+ - + -+ - - + -
6 NE NE + -+ - - - - -+ - + - -
7 NE NE - -+ - = - - -+ - + - -
8 ++ NE + NE - - - - - - - + + - -
9 NE - + NE + -+ + - -+ + NE NE -
10 NE NE - - + - + - - - 4+ - + - -
1 - NE - - - = - - + o+ - - + -
12 - - - - - - - - - - - - NE  NE  + (adrenal, urinary bladder)
13 NE NE - - e
14 NE - NE - - - - - - NE NE NE NE -
Percent positive for inclusions 286 0 462 91 417 0 429 143 286 71 692 308 667 333 143

DRG, dorsal root ganglia; SG, sympathetic ganglia; C, cervical; T, thoracic; L, lumbar; S, sacral; A, anterior; P, posterior. Semiquantitive assessment:—, none; +, 1 to 5

SCCls per area; ++, more than 5 SCCls per area; NE, not examined

nuclei and having similar functional components [32].
The sympathetic ganglia receive preganglionic fibers from
the intermediolateral nucleus of the spinal cord through
the anterior roots of all the thoracic and the upper two
lumber nerves [32]. The sacral preganglionic parasympa-
thetic fibers exit from the sacral cord and go to the ter-
minal ganglia of the pelvic plexuses, as well as to the
myenteric and submucosal plexuses of the descending
colon and rectum [32]. The widespread occurrence of
SCCIs, at least in part, may play a role for the manifestation
of a variety of autonomic symptoms in MSA.

Using the modified Gallyas-Braak method, GCIs were
positive whereas SCCIs were stained only weakly or par-
tially. Ultrastructurally, the constituent filaments of SCCls
(approximately 15-20 nm) appeared thinner than those
of GClIs (approximately 20-30 nm) [3, 4, 7]. Phosphory-
lated a-synuclein-immunoreactive filamentous inclu-
sions are also found in oligodendrocytes and astrocytes
in the brains of patients with Parkinson’s disease and de-
mentia with Lewy bodies [33-35] and are argyrophilic
with the modified Gallyas-Braak method [36], suggesting
that the process of a-synuclein aggregation in glial cells
may differ somewhat between the central and peripheral
nervous systems.

Cranial nerves are composed of myelinated and unmy-
elinated fibers in various proportions [37]. The nerve
fibers of the anterior spinal nerve roots projecting to the
autonomic ganglia are myelinated [38]. Both myelinated
and unmyelinated fibers in the peripheral nervous

system are enveloped with Schwann cells. Although the
number of samples was small, our immunoelectron
microscopy examination demonstrated that inclusion-
bearing Schwann cells, at least in part, ensheath the
myelinated fibers. Considering that postganglionic sym-
pathetic nerve fibers are unmyelinated [39] and a small
number of SCCIs were observed in the visceral autonomic
nervous system in MSA, SCCI formation may also occur
in Schwann cells ensheathing the unmyelinated fibers.
Moreover, immunodeposition was also found in the
outer and inner loops of Schwann cells. In the central
nervous system, constituent filaments of GClIs are not
evident in the outer or inner loops of oligodendrocytes
in MSA [7]. By contrast, tau- and Gallyas-positive fila-
mentous structures are found in the outer and inner
loops of oligodendrocytes in progressive supranuclear
palsy and corticobasal degeneration [39—41]. These find-
ings suggest that phosphorylated o-synuclein pathology
develops both in the perikarya and distal processes of
Schwann cells, whereas the perikarya is chiefly involved
in oligodendrocytes in MSA.

It is unclear how aggregated a-synuclein in the cyto-
plasm of Schwann cells interacts with the axon, myelin
and Schwann cell itself. Both oligodendrocytes and
Schwann cells are essential for axonal function and
integrity. These enwrapping glia support axonal growth
and myelination by transfer of metabolic substrates and
secretion of neurotrophic factors [42]. Glial cell line-
derived neurotrophic factor (GDNF) is one of the
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neurotrophic factors produced by oligodendrocytes [43]
and Schwann cells [44]. The level of GDNEF is signifi-
cantly decreased in the frontal white matter and cerebel-
lum of human MSA patients and in the brain of a MSA
mouse model overexpressing human a-synuclein under
the control of the myelin basic protein promoter [45].
Intraventricular infusion of GDNF improves behavioral
deficits and ameliorates the neurodegenerative pathology
in this MSA mouse model [45]. GDNF induces Schwann
cell migration and axonal regeneration in the peripheral
nervous system [46] and also prevents atrophy of facial
motoneurons following axotomy [47]. Liver kinase Bl
(LKBL1) is also a crucial regulator of the major metabolic
pathway in Schwann cells, which are central to axonal
stability [48]. Deletion of LKB1 leads to energy deple-
tion, mitochondrial dysfunction, abnormalities of lipid
homeostasis and increased lactate release in Schwann
cells [48]. The loss of viability in human neuroblastoma
cells overexpressing wild-type a-synuclein is associated
with reduced activation of intracellular energy sensors,
including LKB1 [49]. a-Synuclein-overexpressing rat
primary neurons also display lower LKB1 activity [49].
Based on the above findings, it is likely that overexpres-
sion of a-synuclein in Schwann cells impairs the activity
of neurotrophic factors, leading to axonal destabilization
in peripheral nerves.

The origin of a-synuclein in SCCIs is uncertain. Immuno-
reactivity of non-phosphorylated a-synuclein has been re-
ported in normal and neoplastic Schwann cells in the
peripheral nervous system of humans [16]. Therefore, it is
possible to consider that overexpression of a-synuclein in
Schwann cells would cause SCCI formation. As another
possible mechanism, neuron-to-neuron transmission of «-
synuclein fibrils through anterograde axonal transport has
been demonstrated in primary cortical mouse neurons
in vitro [50]. The fact that SCCIs tended to appear more
frequently in the proximal than in the distal spinal
nerve roots is appropriate for anterograde transport of
a-synuclein. a-Synuclein in SCCIs could be derived from
neurons. Future studies will be necessary to clarify the
origin of a-synuclein in MSA Schwann cells.

Conclusion

In conclusion, we have provided for the first time evi-
dence that filamentous aggregation of phosphorylated a-
synuclein occurs in Schwann cells in patients with MSA.
Similar inclusions are also observed in the oligodendro-
cytes and neurons of the central nervous system as well
as in neurons of the peripheral ganglia. Both central and
peripheral mechanisms may contribute to the neurode-
generation in MSA.
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