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Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in adults, which remains incurable and often 
recurs rapidly after initial therapy. While large efforts have been dedicated to uncover genomic/transcriptomic 
alternations associated with the recurrence of GBMs, the evolutionary trajectories of matched pairs of primary 
and recurrent (P-R) GBMs remain largely elusive. It remains challenging to identify genes associated with time to 
relapse (TTR) and construct a stable and effective prognostic model for predicting TTR of primary GBM patients. 
By integrating RNA-sequencing and genomic data from multiple datasets of patient-matched longitudinal GBMs 
of isocitrate dehydrogenase wild-type (IDH-wt), here we examined the associations of TTR with heterogeneities 
between paired P-R GBMs in gene expression profiles, tumor mutation burden (TMB), and microenvironment. Our 
results revealed a positive correlation between TTR and transcriptomic/genomic differences between paired P-R 
GBMs, higher percentages of non-mesenchymal-to-mesenchymal transition and mesenchymal subtype for patients 
with a short TTR than for those with a long TTR, a high correlation between paired P-R GBMs in gene expression 
profiles and TMB, and a negative correlation between the fitting level of such a paired P-R GBM correlation and 
TTR. According to these observations, we identified 55 TTR-associated genes and thereby constructed a seven-
gene (ZSCAN10, SIGLEC14, GHRHR, TBX15, TAS2R1, CDKL1, and CD101) prognostic model for predicting TTR of 
primary IDH-wt GBM patients using univariate/multivariate Cox regression analyses. The risk scores estimated by the 
model were significantly negatively correlated with TTR in the training set and two independent testing sets. The 
model also segregated IDH-wt GBM patients into two groups with significantly divergent progression-free survival 
outcomes and showed promising performance for predicting 1-, 2-, and 3-year progression-free survival rates in all 
training and testing sets. Our findings provide new insights into the molecular understanding of GBM progression 
at recurrence and potential targets for therapeutic treatments.

A longer time to relapse is associated 
with a larger increase in differences between 
paired primary and recurrent IDH wild-type 
glioblastomas at both the transcriptomic 
and genomic levels
Wei-Min Ho1,2,3,4,5, Chia-Ying Chen1, Tai-Wei Chiang1 and Trees-Juen Chuang1,2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://orcid.org/0000-0002-9661-6672
http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-024-01790-3&domain=pdf&date_stamp=2024-5-17


Page 2 of 19Ho et al. Acta Neuropathologica Communications           (2024) 12:77 

Introduction
Glioblastoma (GBM), which was classified as grade 4 
glioma by the World Health Organization (WHO), is the 
most common and aggressive malignant brain tumor in 
adults [1, 2]. The registry data from 2000 to 2014 in the 
US revealed that the overall 5-year survival rate of GBMs 
is only 5.4% [3]. It was observed that the vast majority 
(90%) of GBMs were primary arising de novo (or newly 
diagnosed GBMs) [4]; hence, most GBM preclinical stud-
ies are based on tissues from primary GBMs. The stan-
dard treatment of primary GBMs consists of surgical 
tumor resection followed by radiotherapy plus continu-
ous daily temozolomide (TMZ) [5, 6]. However, the over-
all effectiveness of such a treatment is limited because of 
the resistance to TMZ or radiotherapy [7] and the post-
operative GBM recurrence [8]. GBMs often recur rap-
idly after initial therapy; approximately 90% of patients 
were affected by GBM recurrence [9]. Unfortunately, 
no effective therapeutic protocol for the tumor recur-
rence is available currently, leading to an extremely poor 
prognosis [5, 10]. Numerous studies have attributed the 
treatment failure of relapsed GBMs to the high degree of 
intratumoral spatial heterogeneity among GBM patients 
[11–15]. The heterogeneity of treatment outcomes and 
interactions between various clinical factors compli-
cate the accurate and reliable predictions of the time to 
relapse (TTR) for patients with primary GBM, hampering 
timely diagnosis and treatment for the patients. Numer-
ous studies have investigated genetic and transcriptomic 
alternations associated with the recurrence of GBMs 
[16–23], greatly increasing our understanding of the evo-
lutionary trajectories of paired primary-recurrent (P-R) 
GBMs. However, the relationships of TTR to the differ-
ences between paired P-R GBMs at both the transcrip-
tomic and genomic levels remain largely elusive. Analyses 
of such relationships may help identifying genes associ-
ated with long-term progression-free survival (PFS), an 
important response measure for primary GBM patients, 
and then evaluate the effects of present treatments/thera-
pies on disease burden and health-related quality of life 
[24, 25]. Meanwhile, investigation of longitudinal changes 
in gene expression may provide clues for the intratumoral 
spatial heterogeneity and identification of new therapeu-
tic and predictive biomarkers of malignant progression, 
shedding light on GBM etiology and recurrence.

A major challenge to achieve the abovementioned 
goal is the limited sample size for transcriptomic and 
genomic data from paired P-R GBM specimens. Recur-
rent GBMs are not always biopsied, not to mention the 
difficulty in acquiring omics data from both paired P-R 

GBM samples. For example, regarding the RNA-seq data 
of GBM patients in the Cancer Genome Atlas (TCGA; 
http://cancergenome.nih.gov/), less than 8% of samples 
are derived from recurrent tumors and the primary and 
recurrent samples are mostly not biopsied from the same 
patients. Covariate adjustment has been another chal-
lenge for analyses of differences between conditions. 
Covariates encompass a wide range of technical and bio-
logical factors, such as data source, library preparation 
batch, age, gender, WHO grade, and isocitrate dehydro-
genase (IDH) status, which often exert varying degrees 
of influence on gene expression and confound the inter-
pretation of the observed differences between condi-
tions [26]. Some covariates such as IDH status, age, and 
gender were demonstrated to considerably impact the 
GBM patient outcome in prognostic models for survival 
prediction [27]. Adjusting for survival-related covariates 
can improve the statistical power and minimize poten-
tial false positives arising from biological bias or techni-
cal artifacts [28]. However, missing values ​​often occur in 
the available clinical information, catching in a dilemma 
of whether to sacrifice sample size in order to account for 
some covariates.

The newly released dataset generated by the Glioma 
Longitudinal Analysis Consortium (GLASS) [29], which 
comprises a large sample size of genomic data, RNA-seq 
data, and the corresponding clinical information from 
patient-matched longitudinal glioma samples, offers an 
unprecedented opportunity for investigating the evolu-
tionary trajectories of paired P-R GBMs in heterogene-
ities at both the transcriptomic and genomic levels. We 
thus examined the following issues: (i) the effects of vari-
ous covariates on gene expression; (ii) the association of 
TTR with transcriptomic/genomic differences between 
paired P-R GBMs; (iii) the association of TTR with cel-
lular heterogeneity between paired P-R GBMs; (iv) the 
correlation between paired P-R GBMs in gene expres-
sion profiles and tumor mutation burden (TMB); and (v) 
the relationship of TTR to the P-R correlation observed 
in (iv). On the basis of the results of the above analyses, 
we identified 55 TTR-associated genes and utilized the 
55 genes to subdivide the primary GBM patients into two 
molecular subtypes. Our results revealed that these two 
subtypes represented significant differences in TTR and 
outcomes of PFS. We further constructed a seven-gene 
prognostic classifier for predicting TTR of primary GBM 
patients. We demonstrated that the constructed model 
had promising accuracy and sensitivity in all the train-
ing set (the GLASS cohort) and two independent test-
ing sets. Overall, this study unveiled the association of 
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TTR with differences between paired P-R GBMs at both 
the genomic and transcriptomic levels and constructed a 
stable prognostic model for PFS prediction, contributing 
to our understanding of the GBM development and pro-
gression at recurrence and the potential for therapeutic 
treatments.

Methods
Data collection and preprocessing
Gene expression profile (transcripts per kilobase mil-
lion or TPM), mutation calls, and the corresponding 
clinical information of the GLASS glioma samples [29] 
were downloaded from Synapse (https://www.synapse.
org/#!Synapse:syn26465623), respectively. Genome 
assembly GRCh38 and Ensembl gene annotation (version 
100) were employed for the analyses. As shown in Fig. 1A 
and B and 87 patient-matched longitudinal samples with 
both primary and recurrent (surgery 1 and surgery 2) 
IDH wild-type (IDH-wt) GBMs were considered in this 
study (Additional file 1: Table S1). To minimize potential 
spurious events, only the genes expressed (i.e., TPM > 0) 

in > 50% of the examined GBM samples (174 primary or 
recurrent GBM samples) were retained, leaving 21,475 
gene expression features (Additional file 2: Table S2). 
The expression levels of genes were measured by the log2 
(TPM + 1) values with regressing out the effects of the 
four covariates (i.e., age, gender, data source, and paired 
P-R sample IDs) using a linear model (the lm() function 
in the R package). The various types of gene mutation 
features were downloaded from the GLASS data table 
at https://www.synapse.org/#!Synapse:syn17038081/
tables/. Only the variant event whose read count of 
the alternative allele was greater than two was consid-
ered. TMB (mutations/Mb) values were downloaded 
from the GLASS data table at https://www.synapse.
org/#!Synapse:syn32908224/tables/ (see also Additional 
file 3: Table S3). As for the TCGA dataset, TPM and the 
corresponding clinical information of GBM samples were 
downloaded from GDC (https://portal.gdc.cancer.gov/). 
A total of 109 primary IDH-wt GBMs that did not over-
lap with the GLASS cases and had all the correspond-
ing clinical information of age, gender, data source, and 

Fig. 1  Investigation of the differences between paired P-R GBMs at both the transcriptomic and genomic levels. A Summary of the workflow for data ex-
tractions, analyses, and prognostic model construction in this study. pGBM, primary GBM. B Distribution of various types of paired P-R gliomas. Numbers 
in parentheses indicated the number of glioma pairs. NA, IDH status unavailable. C Distribution of the proportions of genes affected by various covariates 
at an FDR < 0.05
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progression-free interval (PFI) (see Fig.  1A and Addi-
tional file 4: Table S4) were considered as a testing set for 
assessing the prediction power of the constructed seven-
gene prognostic model. The expression levels of genes 
were measured by the log2 (TPM + 1) values with regress-
ing out the effects of age, gender, and data source using a 
linear model. An additional testing set, The Glioblastoma, 
Stability of Actionable Mutations (G-SAM) dataset [30], 
was downloaded from The European Genome-phenome 
Archive (https://ega-archive.org/) with permission under 
the accession number of EGAD00001007860. A total of 
155 primary IDH-wt GBMs with RNA-seq data and the 
corresponding clinical information of age, gender, data 
source, and PFI were downloaded for validation (Fig. 1A 
and Additional file 4: Table S4). The clinical informa-
tion was obtained from the authors of the G-SAM study 
[30]. RNA-seq data from more than one sequencing run 
of the same sample was merged. The TPM values were 
calculated using the RSEM tool [31] based on the STAR 
[32] alignment results. Similarly, the expression levels of 
genes were measured by the log2 (TPM + 1) values with 
regressing out the effects of age, gender, and data source.

Covariate assessment and differential expression analysis
We employed a linear regression model (i.e., the lm() 
function in the R package) to assess the effect of each of 
the six covariates including progression status (primary 
or recurrence), TTR, age, gender, data source, and paired 
P-R sample ID on gene expression. The effect of a covari-
ate was measured by the proportion of genes affected by 
this covariate at a false discovery rate (FDR) < 0.05 when 
adjusting for the other five covariates (Fig. 1C and Addi-
tional file 1: Table S1). The P values were FDR-adjusted 
using Benjamini-Hochberg correction. The lm() func-
tion was utilized to identify differentially expressed genes 
(DEGs) between paired P-R GBM samples for all patients 
and patients in each of the three TTR groups (i.e., TTR ≤ 
6 months, TTR of 7–12 months, and TTR < 12 months), 
respectively (Additional file 2: Table S2).

Bulk transcriptional subtype classification and 
deconvolution analysis
On the basis of the adjusted gene expression levels stated 
above, we evaluated the representation of the classical, 
proneural, and mesenchymal bulk transcriptional sub-
types across the GLASS dataset using the “ssgsea.GBM.
classification” R package [33]. For each GBM sample, 
the subtype with the lowest P value was assigned to this 
sample. If there was more than one subtype with the 
lowest P value, the subtype with the highest enrichment 
score was assigned to this sample. The CIBERSORTx web 
tool (https://cibersortx.stanford.edu/) [34] in conjunc-
tion with the covariate-adjusted gene expression levels 
was utilized to estimate the cellular proportions of the 

12 types of cell states for each GLASS sample with batch 
correction of bulk model, disabling quantile normaliza-
tion, absolute model, and permutations = 1000. The sig-
nature matrix file, which was generated by two single-cell 
RNA-seq datasets [35, 36], was downloaded from the 
GLASS study [29].

Assessment of correlation between paired P-R GBMs in 
gene expression profiles and TMB
The correlations between paired P-R GBMs in gene 
expression profiles or TMB (mutations/Mb) were 
assessed using the Pearson’s correlation test. For the 
CLASS cohort [29] (87 paired P-R IDH-wt GBMs), the 
expression levels of genes were measured by the log2 
(TPM + 1) values with regressing out the effects of age, 
gender, and data source using a linear model (the lm() 
function in the R package). For another dataset with 
16 paired P-R IDH-wt GBMs (i.e., Korber et al.’s data-
set [19]), the RNA-seq data were downloaded from the 
European Genome-phenome Archive with permission 
under the accession number of EGAD00001004564. 
The TPM values were calculated using the same proce-
dures stated above. The expression levels of genes were 
measured by the log2 (TPM + 1) values with regress-
ing out the effect of gender (the information of age was 
not publicly accessible). The transcriptomic similarity 
between GBM samples was measured by the transcrip-
tome overlap measure (TROM) scores using the TROM 
method in the R package on CRAN (https://github.com/
Vivianstats/TROM) [37]. A higher TROM score indi-
cates a higher level of transcriptomic similarity between 
samples. The heatmap was created using the heatmap() 
function in the R package. The gene expression profile for 
each GBM sample was measured by the PC1 (principal 
component 1) value of all genes in the examined sample 
through the principal component analysis (PCA) (Addi-
tional file 3: Table S3). The single-cell RNA-seq data from 
30 paired P-R GBM samples were publicly downloadable 
from the NCBI Gene Expression Omnibus repository 
(https://www.ncbi.nim.nih.gov/geo/) with the accession 
number of GSE174554 [38] and processed by the Seurat 
package (version 5.0.1) [39]. The ReadMtx function was 
utilized to read in the expression matrix of each sample. 
Each Seurat object was created by CreateSeurateObject 
function. Here we considered the paired P-R GBMs if the 
samples were IDH-wt tumors and simultaneously had 
TTR information and the CreateSeurateObject param-
eters with min.cells > 150 and min.features > 200. After 
that, 13 paired P-R GBMs were retained in our analyses. 
Each sample object was normalized by the Normalized-
Data function. Variable genes were identified by the Find-
VariableFeatures function with default parameters. The 
ScaleData function was employed to scale the integrated 
object and then determined 1,710 variable features. The 
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top 10 PCs were determined by the RunPCA function 
and calculated by the ProjecteDim function. For each 
sample, we extracted the PC values using the SplitObject 
function and retained the PC1 value for each variable 
feature (gene). For each gene, the PC1 value, which rep-
resented the expression level of this gene, was adjusted 
with regressing out the effects of age and gender using 
the linear model abovementioned. Like the process stated 
above, the gene expression profile for each GBM sample 
was measured by the PC1 value of all the 1,710 genes in 
this sample through the PCA analysis. The linear regres-
sion equation and the fitting line were conducted using 
the lm() function. The fitting levels of the observed data 
in an examined TTR group were measured by the root 
mean square error (RMSE) values. Using Fig.  4B as an 
example, the RMSE value for the cases with TTR ≤ 6 
months (n = 23) was calculated by

	
RMSE =

√√√√1
n

n∑

i=1

(yi − ŷi)
2

where yi and ŷi  were PC1 of the recurrent GBM case i 
and β0 + β1×PC1 of the primary GBM case i, respectively. 
β0 and β1 represented the intercept and slope of the lin-
ear regression equation (Y=-2.546 × 10− 16+0.448X; see 
Fig. 4A), respectively. The tumor hypermutation status of 
the G-SAM dataset was obtained from the authors of the 
G-SAM study [30] (see also Additional file 4: Table S4).

Identification of TTR-associated genes
We identified TTR-associated genes if the genes simul-
taneously satisfied the following criteria. First, the genes 
were not expressed significantly differentially (P > 0.05 by 
the differential expression analysis stated above) between 
paired P-R GBMs in the patients with TTR ≤ 6 months. 
Second, the gene expression levels of the paired P-R 
GBMs were highly correlated with each other (P < 0.05 by 
Pearson’s correlation test). Third, the genes should pass 
both the Kaplan-Meier analysis and the univariate Cox 
proportional hazards regression analysis (both P < 0.05). 
Fourth, only the protein-coding genes expressed in both 
the training (GLASS) and testing (TCGA) sets were con-
sidered. After that, 55 TTR-associated protein-coding 
genes were identified (see Additional file 2: Table S2). 
The signaling pathway analyses (KEGG- and Hallmark-
based pathways) and the Gene Ontology (GO) analy-
sis were performed by modEnrichr (https://maayanlab.
cloud/modEnrichr/) [40]. The ConsensusClusterPlus 
analysis [41] was performed to identify different molec-
ular groups in the primary GBM patients (87 cases; the 
GLASS dataset).

Construction of prognostic models for PFS
The multivariate stepwise regression analysis was 
employed to identify the robust independent gene signa-
ture for PFS prediction in primary IDH-wt GBM patients. 
On the basis of the 55 TTR-associated protein-coding 
genes mentioned in the previous section, the prognostic 
model (Model-ours) with seven key genes (SIGLEC14, 
GHRHR, TAS2R1, CDKL1, ZSCAN10, TBX15, and 
CD101; Additional file 4: Table S4) was thereby con-
structed using the coxph function. A patient’s risk score 
was evaluated by the predictive function of the survival R 
package. The mathematical formula was:

	
Riskscore = exp

(
7∑

i=1

coefficienti × expressioni

)

where coefficienti and expressioni represented the regres-
sion coefficient and the covariate-adjusted expres-
sion level of the ith gene, respectively. The coefficients 
of SIGLEC14, GHRHR, TAS2R1, CDKL1, ZSCAN10, 
TBX15, and CD101 were 0.3296, 0.2804, 2.1475, -0.7833, 
0.8261, 0.5557, and − 0.4108, respectively. The patients 
were divided into high- and low-score groups according 
to the median risk score (1.04) of the 87 primary IDH-wt 
GBM cases in the GLASS cohort.

For Model-new1 construction, TTR-associated genes 
were identified if the genes simultaneously satisfied: (1) 
the genes were DEGs between paired P-R GBMs in the 
GLASS cohort (FDR < 0.05; Additional file 2: Table S2); 
and (2) the third and fourth rules stated in the previous 
section. Model-new1 with four prognostic markers was 
then constructed through a multivariate stepwise regres-
sion analysis (Additional file 4: Table S4). For Model-
new2 construction, TTR-associated genes were identified 
if the genes simultaneously satisfied: (1) the gene expres-
sion levels of the primary GBMs were highly correlated 
with the PFI values (absolute value of Pearson’s correla-
tion coefficient (r) ≥ 0.2 with P < 0.01 according to a pre-
vious study [42]); and (2) the third and fourth rules stated 
in the previous section. Model-new2 with five prognostic 
markers was constructed through a multivariate stepwise 
regression analysis (Additional file 4: Table S4).

Statistical analysis
All box and whisker plots represented median, quartiles 
(box), and range (whiskers). Correlation coefficients and 
P values were evaluated using the Pearson’s correlation 
analysis. For Fig. 2D, for each type of gene mutation fea-
tures, we calculated the ratio of the mutation count in 
pGBMs to those in rGBMs and assessed whether this 
ratio was significantly different from 1 using one propor-
tion Z-Test. To test whether the expression profiles of 
primary samples and their matched recurrent ones were 

https://maayanlab.cloud/modEnrichr/
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highly similar, we conducted a permutation test to esti-
mate P value for the paired P-R GBMs (e.g., 87 paired P-R 
GBMs in the GLASS dataset examined). In Fig.  4A, we 
randomly selected the equal number (i.e., 87) of paired 
GBM samples from all the 174 GBM samples (87 × 2) 
in the GLASS dataset (Additional file 3: Table S3). For 
each pair, the two selected samples were not the same. 
We calculated the TROM score for each pair and then 
the median value of TROM scores for the selected 87 
paired samples. The process was performed 10,000 times 
and the P value was assessed. In Fig. 4B and C, we con-
ducted a permutation test to estimate P value for each 
of the three TTR groups (i.e., TTR ≤ 6 months, TTR of 
7–12 months, and TTR < 12 months). Taking the group 
of TTR ≤ 6 months (n = 23) as an example, we randomly 
selected the equal number of samples (i.e., n = 23) from 

the GLASS dataset and then calculated the RMSE value. 
The process was performed 10,000 times and the P value 
was assessed. The Kaplan-Meier analysis with the log-
rank test was applied to assessing the statistical signifi-
cance of PFS curves. A Cox proportional hazards model 
was employed for univariate and multivariate analyses to 
assess the gene expression on PFS outcomes. The multi-
variate model was constructed using the bidirection step-
wise selection with both parameters of “sle” = 0.05 and 
“sls” = 0.05 (the stepwiseCox function in StepReg R pack-
age). The receiver operating characteristic curves (ROC) 
was performed using the roc.curve() function in the 
PRROC R package. The nomogram model and calibra-
tion plot were conducted using the rms R package. The 
P values of multiple comparisons were adjusted by the 
FDR with Benjamini-Hochberg correction. The statistical 

Fig. 2  Associations of TTR with the differences between paired P-R GBMs at the transcriptomic and genomic levels. A-B Comparisons of the gene expres-
sion differences (measured by the RMSE) (A) and the effects of differential expression (measured by the absolute value of log2 transformed fold change) 
(B) between paired P-R GBMs for patients in the three TTR groups: patients with TTR ≤ 6 months, TTR of 7–12 months, and TTR < 12 months. C Compari-
sons of the TMB values (mutations/Mb) between paired P-R GBMs for all patients (left) and patients in the three TTR groups (right). D Comparisons of vari-
ous types of gene mutation features for primary and recurrent GBMs in the three TTR groups. For (A)-(C), P values were evaluated using Wilcoxon signed 
rank test. For (D), P values were evaluated using one proportion Z-Test. pGBM, primary GBM. rGBM, recurrent GBM
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analyses used in the figures were also indicated in the 
corresponding figure legends. The one proportion Z-Test 
[43] was performed at https://www.medcalc.org/calc/
test_one_proportion.php. The other statistical analyses 
were conducted using the R package of version 4.2.3.

Results
Normalization of gene expression and assessment of 
covariate effects
We extracted the gene expression data of patient-
matched longitudinal samples and the corresponding 
clinical information from the GLASS cohort [29]. To 
investigate the effect of TTR on transcriptomic/genomic 
differences between paired P-R gliomas, we focused on 
the paired P-R gliomas in the GLASS dataset (Fig.  1A). 
The publicly downloadable GLASS dataset comprised 
130 glioma patients with RNA-seq data for two time 
points (i.e., primary and first recurrence), of which more 
than 75% of them were GBM cases (i.e., progression from 
primary GBM to relapsed GBM; 98 cases) (Fig.  1B). Of 
the 98 patients, 87 were IDH-wt GBM cases. Since the 
sample size of the paired P-R GBMs with IDH-mutant 
was extremely limited, the 87 pairs of IDH-wt GBMs with 
complete information of sex, age, data source, and TTR 
were considered in this study (Fig. 1B and Additional file 
1: Table S1). We asked whether some technical and bio-
logical confounding factors could considerably affect the 
analysis of DEGs between primary and recurrent GBM 
samples. We then employed a linear regression model to 
evaluate the effects of the covariates, including longitudi-
nal progression status (primary or recurrent GBMs), age, 
gender, data source, TTR, and paired P-R sample IDs, 
on each gene (see Methods). The effect of a covariate on 
gene expression was evaluated by measuring the propor-
tion of genes affected by this factor at an FDR < 0.05 when 
adjusting for the other covariates examined (Additional 
file 1: Table S1). Our results revealed that all the exam-
ined covariates can considerably impact gene expression 
(Fig.  1C). Importantly, we found that the effects of age, 
gender, paired P-R sample IDs, and data source (paired 
P-R sample IDs and data source particularly) were much 
higher than the effects of longitudinal progression status 
and TTR on gene expression (Fig. 1C). Thus, to examine 
the relationship between TTR and gene expression differ-
ences in paired P-R GBMs, we calculated the expression 
levels of genes with adjusting for the effects of age, gen-
der, data source, and paired P-R sample IDs.

Association of TTR with transcriptomic/genomic 
differences between paired primary-recurrent GBMs
We first calculated the RMSE values to evaluate the 
gene expression difference between each P-R GBM pair 
(Additional file 1: Table S1). We divided the 87 paired 
P-R GBMs into three groups according to TTR: 23 

patients with TTR ≤ 6 months; 33 patients with TTR of 
7–12 months; and 31 patients with TTR > 12 months. 
Our result showed that the RMSE values were gener-
ally lower in patients with TTR ≤ 6 months than in those 
with TTR > 6 months, suggesting a positive correla-
tion between the gene expression differences and TTR 
(Fig.  2A). Next, we performed differential expression 
analyses between paired P-R GBMs for each of the three 
TTR groups mentioned above (Methods; Additional file 
2: Table S2). Similarly, the effects of the transcriptional 
differences (i.e., the absolute value of log2 transformed 
fold change) significantly increased with increasing TTR 
values (Fig.  2B). Regarding TMB (e.g., mutations/Mb) 
of the paired P-R GBM patients, we observed that the 
TMB was significantly higher in recurrent GBM samples 
than in primary GBM samples (P = 0.00005 by Wilcoxon 
signed rank test; Fig.  2C, left). For the recurrent GBM 
samples, we also observed a positive correlation between 
the TTR and the TMB (Fig.  2C, right), consistent with 
the previous study [44]. Intriguingly, the significant dif-
ferences in the TMB between the paired P-R GBM sam-
ples were observed for patients with a long TTR (e.g., 
TTR > 6 months), not for those with a short TTR (TTR 
≤ 6 months) (Fig. 2C, right). Furthermore, we examined 
the counts of various types of gene mutation features 
in primary and recurrent GBMs among the three TTR 
groups (Additional file 1: Table S1). Consistently, the 
total mutation count was significantly larger in recurrent 
GBMs than in primary GBMs for patients with TTR > 6 
months, not for those with TTR ≤ 6 months (Fig.  2D). 
Such significant differences were particularly found in 
the mutation features that could cause nonsynonymous 
changes or gain/loss of protein-coding nucleotides (e.g., 
deletion frameshift mutations, missense mutations, non-
sense mutations, and mutations at splice sites; Fig.  2D). 
Taken together, these results revealed that both tran-
scriptomic and genomic differences in paired P-R GBMs 
were remarkably lower in patients with a short recur-
rence interval as compared with those with a long recur-
rence interval.

Association of TTR with cellular heterogeneity between 
primary and recurrent GBMs
We assessed the representation of three major bulk 
transcriptional subtypes (i.e., classical, proneural, and 
mesenchymal subtypes [33]) across the GLASS pri-
mary and recurrent GBMs. Like the trend observed 
in the recent studies [29, 30], approximately 50% of 
patients underwent subtype transitions at recurrence 
(Fig. 3A and Additional file 1: Table S1). Of the patients 
undergoing subtype transitions, the non-mesenchy-
mal-to-mesenchymal transition was the most com-
mon transition, although the percentage of such a 
transition was not significantly different from that of 

https://www.medcalc.org/calc/test_one_proportion.php
https://www.medcalc.org/calc/test_one_proportion.php
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the mesenchymal-to-non-mesenchymal transition 
(Fig. 3A). If we examined the longitudinal transitions for 
the patients with different TTR values, several trends 
were observed (Fig.  3B and E). First, the percentages 
of the non-mesenchymal-to-mesenchymal transition 
decreased with increasing TTR values (30.4% for TTR≤6 
months, 21.2% for TTR at 7–12 months, and 16.1% for 
TTR > 12 months; Fig.  3C). Particularly, the percentage 
of the non-mesenchymal-to-mesenchymal transition 
was significantly higher than that of mesenchymal-to-
non-mesenchymal transition in patients with TTR ≤ 6 
months (P < 0.05 by one proportion z-test; Fig. 3C). Sec-
ond, we observed that approximately half (42.4-56.5%) 
of patients remained the same transcriptional subtypes 

at both time points for the three TTR groups (Fig. 3C). 
Of note, regarding the patient-matched longitudinal 
GBM samples without transcriptional subtype switching, 
the percentage of mesenchymal GBMs was significantly 
higher in patients with TTR ≤ 6 months than in those 
with TTR > 6 months (both P < 0.01 by two-tailed Fisher’s 
exact test; Fig. 3D). In contrast with mesenchymal sam-
ples, patients with TTR ≤ 6 months had a significantly 
lower percentage of proneural samples as compared with 
those with TTR > 6 months (both P < 0.01 by two-tailed 
Fisher’s exact test; Fig.  3D). Finally, the mesenchymal 
GBMs exhibited the most common transcriptional sub-
type in both primary and recurrent GBM samples with 
TTR ≤ 6 months (Fig.  3E). Regarding the patients with 

Fig. 3  Associations of TTR with cellular heterogeneity between paired P-R GBMs. A Distribution of the three transcriptional subtypes (classical, proneural, 
and mesenchymal subtypes) in primary and recurrent GBMs. The Sankey plot and the pie chart indicated the transcriptional subtype transitions from 
primary GBMs to recurrent GBMs (middle) and the percentages of different subtype transitions (left), respectively. Numbers in parentheses indicated 
the number and percentage of types of the transcriptional subtype transitions. B-C Sankey plots (B) and pie charts (C) representing the transcriptional 
subtype changed at recurrence and the percentages of different subtype transitions with respect to TTR ≤ 6 months, TTR of 7–12 months, and TTR < 12 
months, respectively. D Distributions of the three transcriptional subtypes with respect to TTR ≤ 6 months, TTR of 7–12 months, and TTR < 12 months, 
when the transcriptional subtypes remained at both time points. E Percentages of mesenchymal samples in primary and recurrent GBMs with respect to 
TTR ≤ 6 months, TTR of 7–12 months, and TTR < 12 months. For (A) right, (C), and (E), P values were evaluated using one proportion Z-Test. For (D) P values 
were evaluated using two-tailed Fisher’s exact test. pGBM, primary GBM. rGBM, recurrent GBM. *, P ≤ 0.05. **, P ≤ 0.01. ***, P ≤ 0.001. ns, not significant
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TTR ≤ 6 months, the reason why the percentage of mes-
enchymal GBMs was lower in primary GBMs than in 
recurrent ones may be due to the high percentage of the 
non-mesenchymal-to-mesenchymal transition between 
these two time points (Fig. 3C, left).

Correlation between paired primary and recurrent GBMs at 
the transcriptomic and genomic levels
We then examined the correlation between gene expres-
sion profiles of paired P-R GBMs. We first asked whether 
the expression profiles of primary samples and their 
matched recurrent ones were highly similar. We evalu-
ated the transcriptomic similarity between GBM sam-
ples using TROM scores [37] and found a significantly 
higher level of transcriptomic similarity for the paired 
P-R GBMs than for the paired samples randomly selected 
(P < 0.001 by permutation test; see Methods) (Fig.  4A). 
Next, for each pair of P-R GBMs, we performed PCA 
and determined the PC1s of all genes for the primary 
and recurrent GBMs, respectively (Additional file 3: 
Table S3). Pearson’s correlation test revealed a signifi-
cantly positive correlation between the PC1s of genes 
expressed in these two time points (r = 0.42, P < 0.0001). 
Correspondingly, the linear regression equation (Y=-
2.546 × 10− 16+0.448X) with a fitting line was conducted 
to fit the observed data from the paired P-R GBMs of 
the GLASS cohort (Fig. 4B). Intriguingly, on the basis of 
the fitting line, we found that the PC1s of the cases with 
TTR ≤ 6 months had the best fitting level (or the lowest 
RMSE value; see Methods), followed by those with TTR 
at 7–12 months, and then by those with TTR > 12 months 
(Fig.  4A). Particularly, the cases with TTR ≤ 6 months 
had a significant low RMSE value (P < 0.05 by permuta-
tion test; see Methods). In addition to the bulk RNA-seq 
data from the GLASS cohort, we integrated single-cell 
RNA-seq data spanning 13 paired P-R IDH-wt GBMs 
from an independent external cohort [38] (Methods). 
Although the sample size was small (n = 13), the similar 
trend of the better fitting level in cases with a short TTR 
than in those with a long TTR was observed (Additional 
file 5: Fig. S1).

Since the previous results showed that the level of 
genomic differences between paired P-R GBMs was posi-
tively correlated with TTR (Fig.  2C), we asked whether 
the TMB values of the P-R pairs were highly correlated 
with each other. As expected, Pearson’s correlation test 
revealed a significantly positive correlation between 
the TMB (i.e., mutations/Mb) of the cases at these two 
time points (r = 0.45, P < 0.001). To fit the observed data 
of TMB, we constructed a linear regression equation 
(Y = 0.2174 + 0.867X) as well as a fitting line and found 
that the fitting levels of the observed data generally 
decreased with increasing TTR values (or the RMSE val-
ues increased with increasing TTR values) (Fig. 4C). We 

also observed that the cases with TTR ≤ 6 months had 
a significant low RMSE value (P < 0.05 by permutation 
test). Regarding an independent dataset extracted from 
Hoogstrate et al.’s study [30] (the G-SAM cohort), we 
evenly divided the GBM cases into three groups accord-
ing to the PFIs. Consistently, the percentages of tumor 
hypermutation, which was defined if at least 10 coding 
mutations were gained and the mutation burden of the 
recurrent tumor had more than 10 coding mutations per 
targeted Mb on the panel [30], increased with increas-
ing PFIs (Fig. 4D). Taken together, these results reflected 
our above observations that both transcriptomic and 
genomic differences between paired P-R GBMs increased 
with increasing lengths of elapsed time to recurrence.

Identification of TTR-associated molecular subtypes in 
primary GBM patients
The above results showed: (i) a lower level of transcrip-
tomic and genomic differences in cases with a short 
recurrence interval than in those with a long recurrence 
interval; (ii) a positive correlation between paired P-R 
GBMs in gene expression profiles and TMB; and (iii) fol-
lowing the second point, such a positive correlation had 
a much better fit to the samples with a short recurrence 
interval than to those with a long recurrence interval. We 
thus hypothesized that the genes with similar expression 
patterns between the paired P-R GBM samples of a short 
recurrence interval (e.g., TTR ≤ 6 months) might play a 
role in affecting TTR. Accordingly, a protein-coding gene 
was identified to be a TTR-associated gene if it simulta-
neously satisfied the following criteria: (i) the gene was 
not expressed significantly differentially between paired 
P-R GBMs in the patients with TTR ≤ 6 months; (ii) 
the gene expression levels of the gene in the paired P-R 
GBMs were highly correlated with each other; and (iii) 
the gene passed the Kaplan-Meier and univariate Cox 
proportional hazards regression analyses with both P 
values < 0.05 (see Methods). Accordingly, 55 TTR-asso-
ciated protein-coding genes were identified (Additional 
file 2: Table S2). Gene set enrichment analysis based on 
the Hallmarks gene sets from the molecular signature 
database [45] showed that the 55 genes were associated 
with cell stress/death signaling pathways (UV response 
and apoptosis), TNF-alpha signaling via NF-kB, and the 
complement system (Fig.  5A, top left). KEGG pathway 
analysis indicated that these genes were over-represented 
in HIF-1 signaling pathway (Fig.  5A, bottom left). GO 
analysis revealed that they were significantly enriched 
in the biological process terms related to apoptosis sig-
naling pathway, inflammatory response-related biologi-
cal processes (e.g., cytokine production and leukocyte 
aggregation), and so on (Fig.  5A, right). It is widely 
known that the complement system plays an important 
role in the maintenance of glioma stem-like cells [46], 



Page 10 of 19Ho et al. Acta Neuropathologica Communications           (2024) 12:77 

which have the potential to develop varied tumor cell 
populations and thereby acquire therapeutic resistance 
[47]. Consistently, HIF-1 signaling pathway is associated 
with the hypoxia-mediated maintenance of stem cells 
and malignant cell behavior in GBMs [48, 49]. In addi-
tion, inflammation is an important feature of tumors 
[50]. Inflammatory responses are often relevant to tumor 
invasion/metastasis and the results of radiotherapy in 
GBMs [51]. The response to TNF signaling is known to 
be important during peripheral organ inflammation in 

human brains [52]. TNF-alpha was reported to be essen-
tial for GBM progression [53].

On the basis of the 55 TTR-associated genes, we per-
formed the ConsensusClusterPlus analysis [41] and 
precisely divided primary GBM patients (87 cases) into 
two different groups (Group 1 and Group 2), in which 
Group 1 and Group 2 accounted for 39 and 48 cases, 
respectively (Fig. 5B and Additional file 4: Table S4). PCA 
based on the 55 TTR-associated genes showed that these 
two groups of primary GBM patients could be grouped 

Fig. 4  Correlation between paired primary and recurrent GBMs at the transcriptomic and genomic levels. A Transcriptomic similarity (measured by 
the TROM scores) between two GBM samples selected from the GLASS dataset (87 pGBM and 87 rGBM samples). The similarity between a sample and 
itself was not shown. The red box represented the 87 P-R paired GBM samples. P value was assessed using permutation test (see the text). B Correlation 
between the PC1s of genes expressed in paired primary and recurrent GBMs for the GLASS cohort. C Correlation between the TMB values (mutations/
Mb) in paired primary and recurrent GBMs for the GLASS cohort. For (B) and (C), the orange, blue, and green solid dots represented the cases with TTR ≤ 
6 months (23 pairs), TTR of 7–12 months (33 pairs), and TTR < 12 months (31 pairs), respectively. Numbers in parentheses indicated the fitting levels (mea-
sured by the RMSE) of the cases in the corresponding TTR groups; P values were assessed using permutation test (see the text). Correlation coefficients 
and the corresponding P values were evaluated using the Pearson’s correlation analysis. D Percentages of tumor hypermutation for the GBM patients with 
short (< 8.66 months; n = 52), medium (8.66–16.7 months; n = 52), and long (> 16.7 months; n = 51) PFIs in the G-SAM dataset. P values were assessed using 
one-tailed Fisher’s exact test. pGBM, primary GBM. rGBM, recurrent GBM. *P ≤ 0.05, **P ≤ 0.01
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into separate clusters (Fig.  5C). The heatmap further 
revealed that these two groups exhibited a clear differ-
ence in mRNA expression, in which the 55 genes were 
more highly expressed in the Group 2 cases than in the 
Group 1 ones (Fig.  5D). Importantly, we found that the 
median TTR value of the Group 1 cases was significantly 
higher than that of the Group 2 cases (P < 0.001 by two-
tailed Wilcoxon rank-sum test; Fig. 5E). Consistently, the 
Kaplan-Meier analysis suggested that patients in Group 
1 had a better outcome of PFS as compared with those 
in Group 2 (P < 0.001 by log-rank test; Fig.  5F). Mesen-
chymal GBMs were reported to have a short TTR [29]. 

Indeed, the percentage of mesenchymal GBMs was sig-
nificantly lower in the Group 1 cases than in the Group 2 
cases (P < 0.001 by two-tailed Fisher’s exact test; Fig. 5G). 
These results revealed the significant difference in TTR 
between primary GBM samples in these two groups, sug-
gesting the potential role of the TTR-associated genes for 
predicting TTR of primary GBMs.

Construction of a prognostic model for TTR prediction
We have shown the significance of the 55 TTR-associated 
genes in regulating the progression of GBMs. According 
to these 55 genes, we performed the multivariate Cox 

Fig. 5  Analysis of the identified TTR-associated genes. A Functional enrichment analysis of the 55 TTR-associated genes using Hallmarks, KEGG pathway, 
and GO biological process gene sets. The P values were FDR-adjusted using Benjamini-Hochberg correction. The red dashed line indicates the FDR = 0.05. 
B Consensus clustering of patients with primary GBM (87 cases) using the 55 TTR-associated genes. The patients were effectively divided into two groups. 
C Principal component plots of gene expression profiles of the 55 TTR-associated genes in the 87 primary GBM samples. D Heatmap showing the differ-
ences in expression of the 55 TTR-associated genes in the two groups. E Comparison of the TTR values of the cases in the two groups. F Kaplan-Meier 
analysis of PFS for the two groups in the 87 primary GBM samples. G Distributions of the three transcriptional subtypes with respect to the two groups in 
the primary GBM samples. For (A) right, (C), and (E), P values were evaluated using one proportion Z-Test. For (D) and (G), P values were evaluated using 
two-tailed Fisher’s exact test. For (E) and (F), P values were evaluated using two-tailed Wilcoxon rank-sum test and log-rank test, respectively
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regression analysis to construct a gene prognostic clas-
sifier for predicting TTR (or PFI). Herein, we identified 
seven robust prognostic markers (SIGLEC14, GHRHR, 
TAS2R1, CDKL1, ZSCAN10, TBX15, and CD101) that 
were independent factors significantly correlated with 
the TTR of the primary GBM samples (Fig. 6A). Among 
these seven genes, highly expressed CDKL1 and CD101 
can server as protective factors to promote the PFS of 
GBM patients, whereas the high expression levels of the 
other five risk factors exhibited the reverse trend (Fig. 6A 
and Additional file 5: Fig. S2). A risk score formula 
based on the seven key genes was thus developed and 
employed to score the prognostic risk of each primary 
GBM patient (Methods and Additional file 4: Table S4). 

We dichotomized the GBM patients into high- and low-
score groups using the median cutoff value of risk scores 
(1.04; Fig.  6B). The distribution of risk scores and TTR 
revealed that patients with high risk scores tended to 
have a shorter recurrence interval compared with those 
with low risk scores (Fig.  6B). Indeed, the risk scores 
were significantly negatively correlated with the TTR 
values (P = 0.002 by Pearson’s correlation test; Fig.  6C). 
Kaplan-Meier analysis revealed that the PFS rate of the 
high-score group was significantly lower than that of the 
low-score one (P < 0.0001 by log-rank test; Fig. 6D, left). 
The ROC analysis also showed that this prognostic model 
exhibited good predictive power with 1-, 2-, and 3-year 
AUC values for 0.873, 0.922, and 0.947, respectively 

Fig. 6  Construction of a seven-gene prognostic classifier for PFS prediction of primary GBM patients using the 55 TTR-associated genes. A Forest plot 
representing the multivariate Cox regression analysis of the seven key genes used in the constructed model. B Distribution of the risk scores of the prog-
nostic model in each patient and the corresponding TTR value. The arrow indicated the median cutoff value of risk scores (1.04). C Correlation between 
the TTR values and the risk scores. D Evaluation of the efficiency (the Kaplan-Meier analysis; left) and accuracy (the ROC analysis; right) of the constructed 
prognostic model for PFS prediction of all the examined patients in the GLASS cohort (n = 87). E Evaluation of the efficiency and accuracy of the model for 
PFS prediction of the patients with TMZ treatment in GLASS (n = 69). F Comparison of the percentages of patients with MGMT gene promoter methylation 
for the patients with TMZ treatment in the high-score (risk score ≥ 1.04; n = 22) and low-score (risk score < 1.04; n = 21) groups. For (A), (D), and (E), P values 
were evaluated using log-rank test. For (C), correlation coefficient and P value were evaluated using the Pearson’s correlation analysis. For (F), P value were 
evaluated using one-tailed Fisher’s exact test
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(Fig. 6D, right). We found that approximately 80% of the 
GBM patients (69 out of 87 cases) in the GLASS cohort 
had been treated with TMZ. Regarding the patients with 
TMZ treatment, similar results were observed (Fig. 6E). 
Of note, MGMT gene promoter methylation is often con-
sidered as a biomarker in predicting a favorable outcome 
in GBM patients who are exposed to alkylating agent che-
motherapy [7, 54]. Consistently, of the patients with TMZ 
treatment, the low-score group had a significant higher 
percentage of patients with MGMT gene promoter meth-
ylation as compared with the high-score group (P = 0.01 
by one-tailed Fisher’s exact test; Fig. 6F).

A recent report indicated that MGMT gene promoter 
methylation status and extent of resection were impor-
tant factors in affecting the patient outcome of prog-
nostic model for PFS prediction [27]. By simultaneously 
considering the identified prognostic index (risk score), 
MGMT methylation status, and extent of resection, we 
performed a multivariate Cox regression analysis to 
evaluate the contribution and independence of these 
three features for PFS prediction in primary IDH-wt 
GBM patients. The multivariate Cox regression analysis 
showed that only the seven-gene prognostic index was 
significantly associated with PFS and acted as an inde-
pendent prognostic factor for PFS prediction (Table  1). 
Taken together, these results supported the satisfactory 
prediction efficiency of the constructed prognostic model 
for predicting PFS in primary IDH-wt GBM patients.

Verification of the prognostic model in independent 
external cohorts
Next, we examined the reliability of the seven-gene sur-
vival prediction classifier for the primary IDH-wt GBM 
patients from two independent external cohorts (the 
TCGA and G-SAM datasets), which respectively con-
sisted of 109 and 155 IDH-wt GBM cases with complete 
information of sex, age, data source, and PFI (Fig.  1A). 
Like the trend observed in the training set (i.e., the 
GLASS cohort), the risk scores estimated by the con-
structed model were significantly negatively correlated 
with the PFI values in these two testing sets (i.e., TCGA 
and G-SAM cohorts; Fig.  7A). According to the same 

cutoff value of risk scores (1.04) used in the training set, 
we dichotomized the primary IDH-wt GBM patients 
of the two testing sets into high- and low-score groups, 
respectively. Consistently, Kaplan-Meier analyses showed 
a significantly lower PFS rate in the high-score group 
than in the low-score one (Fig.  7B). ROC analyses also 
indicated fair predictive power at one, two, and three 
years in the two testing sets (Fig. 7C). These observations 
supported the promising predictive performance of the 
constructed model for assessing the PFI of primary IDH-
wt GBM patients.

Finally, we constructed a seven-gene nomogram model 
for clinically practical usability according to the GLASS 
dataset (Fig.  7D). The corresponding calibration plots 
were provided (Additional file 5: Fig. S3). On the basis of 
the nomogram model, researchers can measure the risk 
score of each maker gene and the total risk score for each 
patient according to the corresponding gene expression 
of the patient. Since we had demonstrated that the TTR 
values significantly decreased with increasing risk scores 
(Fig.  6C), the constructed model provided a good mea-
surement to assess the potential time to recurrence for 
IDH-wt GBM patients at the primary status.

Discussion
The GLASS dataset [29] has brought an unprecedented 
opportunity for investigating the evolutionary trajec-
tories of paired P-R GBMs in terms of heterogeneities 
of gene expression, TMB, and microenvironment. Here 
we focused on studying the association of such hetero-
geneities with TTR. By integrating TTR with the corre-
sponding longitudinal transcriptomic and genomic data 
of paired P-R IDH-wt GBMs, three major observations 
were unveiled in this study. First, the levels of differences 
between paired P-R GBMs were highly correlated with 
the TTR at both the transcriptomic and genomic levels. 
Second, both the gene expression profiles and TMB of 
paired P-R GBMs were highly correlated with each other. 
Third, on the basis of such a P-R correlation, the fitting 
levels of the conducted linear regression formula to the 
examined cases were highly associated with the TTR.

Table 1  Univariate and multivariate Cox regression analyses of the risk score based on the constructed prognostic model and the two 
clinical features: MGMT methylation status and extent of resection
Variable1 Univariate analysis2 Multivariate analysis3

HR 95% CI P value HR 95% CI P value
Risk score 3.352 2.063–5.449 1.05e-06 5.336 1.510-18.854 0.009
MGMT methylation status 3.207 1.657–6.206 0.0005 3.103 0.8963–10.744 0.074
Extent of resection 1.099 0.589–2.049 0.767 1.216 0.468–3.162 0.688
1For the variables of risk score, MGMT methylation status, and extent of resection, “low risk score”, “methylated”, and “total” were used as the references, respectively
2For risk score, 87 cases were examined (43 with a low-risk score and 44 with a high-risk score). Regarding the availability of the examined clinical features, 49 (22 
with a methylated status and 27 with a unmethylated status) and 41 (22 with a total resection and 19 with a subtotal resection) cases were used for assessing the 
importance of the MGMT methylation status and the extent of resection in the univariate analysis, respectively. HR, Hazard ratio
3With having overlapping gene expression data and the two clinical features, 22 cases were examined in the multivariate analysis
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For the first observation, we found that the levels of 
differences for paired P-R GBM samples were signifi-
cantly lower in the patients with a short recurrence inter-
val than in those with a long recurrence interval at both 
the genomic and transcriptomic levels (Fig.  2). At the 
genomic level, we found no significant difference in TMB 
among the primary GBMs with different TTR, whereas 
the recurrent GBMs with a longer TTR exhibited a higher 
TMB (Fig. 2C and Additional file 5: Fig. S4). These results 
suggested that the positive correlation between the 
genomic differences between paired P-R GBM samples 
and TTR values was due to the longitudinal mutation 
accumulation during the time to recurrence. This also 
reflected the time-dependence of the activities of distinct 

mutational processes [44]. Somatic mutations were pre-
viously reported to be correlated with gene dysregulation 
of multiple genes in GBMs [55], suggesting that longitu-
dinal mutation accumulation might lead to longitudinal 
changes of expression patterns during GBM progression. 
For the second observation, we found a high correlation 
between the paired P-R GBMs in terms of both the gene 
expression profiles and TMB (Fig. 4). Such a high corre-
lation with respect to TMB (mutation counts) was also 
previously shown in an independent dataset from Korber 
et al.’s study, which consisted of 16 paired P-R IDH-wt 
GBM samples [19]. By extracting the corresponding gene 
expression data from Korber et al.’s study, we also calcu-
lated the PC1s of all genes for the primary and recurrent 

Fig. 7  Verification of the constructed prognostic model for PFS prediction in two testing sets (the TCGA and G-SAM datasets). A Correlation between the 
PFI values and the risk scores estimated by the constructed model for the primary IDH-wt GBM cases in the TCGA and G-SAM cohorts. B Kaplan-Meier 
analyses of PFS for the groups with low- or high-risk scores in the TCGA and G-SAM cohorts. C Time-dependent ROC analyses of 1-, 2-, and 3-year PFS 
for the constructed model in the TCGA and G-SAM cohorts. D Construction of a nomogram for quantitatively predicting 1-, 2-, and 3-year PFS of primary 
IDH-wt GBM patients
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GBMs, respectively. Similarly, the trend of a significantly 
high correlation between the gene expression profiles of 
the paired P-R GBMs held well (Additional file 5: Fig. 
S5). For the third observation, on the basis of the second 
observation, we conducted a linear regression equation 
with a fitting line and found a better fitting level of the 
fitting line for the cases with a short recurrence interval 
than for those with a long recurrence interval at both 
the transcriptomic and genomic levels (Fig.  4). These 
longitudinal analyses suggested the high association of 
TTR with the differences between paired IDH-wt GBM 
tumors at both the genomic and transcriptomic levels, 
wherein such differences were lower in samples with a 
short recurrence interval than in those with a long recur-
rence interval.

According to the above observations, we identified 
55 TTR-associated genes and demonstrated that the 
55 TTR-associated genes can divide the primary GBM 
patients into two separate molecular subtypes, Group 1 
and Group 2 (Fig.  5B and D). The subsequent analyses 
revealed that the Group 1 patients had a longer TTR, 
a better PFS, and a lower percentage of mesenchymal 
GBMs than the Group 2 ones (Fig.  5E and G), suggest-
ing that the 55 TTR-associated genes might play a poten-
tial molecular typing for clinical application of IDH-wt 
GBMs. Through multivariate Cox regression analysis, we 
further constructed a seven-gene prognostic classifier for 
predicting TTR. Our results demonstrated the promis-
ing predictive power and robustness of the constructed 
model (“Model-ours”) for assessing TTR (or PFI) of pri-
mary IDH-wt GBM patients in the training and testing 
sets (Figs. 6 and 7). Consistently, the risk scores estimated 
by Model-ours were significantly lower in the Group 1 
patients than in the Group 2 ones (P < 10− 6 by two-tailed 
Wilcoxon rank-sum test; Additional file 5: Fig. S6).

With respect to the construction of prognostic model 
for PFS prediction, some studies may first identify the 
DEGs between primary and recurrent GBM samples and 
then construct the prognostic models based on the DEGs 
[56–58]. Using this similar strategy, we also identified 
DEGs between the paired P-R GBMs from the GLASS 
dataset (Additional file 2: Table S2) and thereby con-
structed a new model for predicting TTR (“Model-new1”; 
Additional file 5: Fig. S7A). Although Model-new1 also 
stratified the primary GBM patients into high- and low-
risk groups with a significant difference in probability of 
recurrence in the training set (i.e., the GLASS cohort) 
(P < 0.05 by log-rank test; Additional file 5: Fig. S7B), this 
prognostic model did not segregate patients from the 
two testing sets (the TCGA and G-SAM cohorts) into 
two groups with divergent PFS outcomes (both P > 0.05; 
Additional file 5: Figs. S7C and S7D). These results 
revealed that Model-new1 was not a robust and effec-
tive model for PFS prediction of GBM patients. On the 

other hand, a recent study identified genes associated 
with the PFI using a linear correlation method (Pearson 
correlation coefficient) without the information from the 
GBM patients at recurrence and suggested the contribu-
tion of these genes to predicting PFI [42]. We employed 
the same criteria to identify genes associated with the 
TTR and constructed another new model for predicting 
TTR (“Model-new2”; Additional file 5: Fig. S7E). How-
ever, similarly, the good predictive power was shown in 
the training set only, not in the two testing sets (Addi-
tional file 5: Figs. S7F-S7H). These results suggested that 
Model-new2 cannot act as a stable and effective typing 
tool for GBM patients. It is worthy to note that our model 
(Model-ours) exhibited a better model performance (a 
higher C-index) compared with Model-new1 and Model-
new2 (Additional file 5: Fig. S7I). These results also indi-
cated the importance of the expression patterns from the 
paired P-R GBMs for constructing a stable prognostic 
model for PFS prediction.

Regarding the constructed prognostic model 
(Model-ours), it consisted of seven prognostic mark-
ers, ZSCAN10, SIGLEC14, GHRHR, TBX15, TAS2R1, 
CDKL1, and CD101. Our model suggested that highly 
expressed CDKL1 and CD101 were associated with a lon-
ger TTR of GBM patients, whereas the high expression 
of SIGLEC14, GHRHR, TAS2R1, ZSCAN10, and TBX15 
exhibited the reverse trend (Fig. 6A and Additional file 5: 
Fig. S2). Of these maker genes, ZSCAN10 is known to be 
important for the pluripotency of embryonic stem cells 
through regulating two pluripotency markers, OCT4 and 
SOX2 [59–61]. Particularly, OCT4 was demonstrated to 
induce the neurosphere formation of glioma stem cells 
[62], contributing to GBM recurrence and resistance to 
radiotherapy and chemotherapy. SIGLEC14 was found 
to be associated with the elevation of an inflammatory 
response through activating the MAPK pathway [63]. 
Such inflammatory mediators could play a critical role in 
establishing an immunosuppressed microenvironment, 
leading to preserving the stemness of GBM cells [64]. 
GHRHR was reported to contribute to drug resistance of 
sermorelin [65]. Sermorelin can inhibit the cell growth 
of GBM cells by penetrating the blood-brain barrier eas-
ily and was considered an effective drug for treatment of 
recurrent glioma patients [66, 67]. In addition, it is known 
that recurrent GBMs are highly immunosuppressive [68]. 
TBX15 was suggested to be associated with immune cell 
infiltration and immunosuppression and exhibit poor 
clinicopathological characteristics and survival progno-
sis in glioma patients [69]. For the remaining signatures 
(TAS2R1, CDKL1, and CD101), the relevance of them to 
GBM recurrence is still greatly unknown. As potential 
markers and therapeutic targets for GBM patients, it is 
worthwhile to further investigate their biological role and 
pathological mechanism in glioma at recurrence.
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In terms of longitudinal cellular heterogeneity, we 
observed that the cellular heterogeneity between pri-
mary and recurrent GBMs varied among different TTR. 
The patients with a short recurrence interval had a higher 
percentage of mesenchymal subtype compared to those 
with a long recurrence interval. For GBMs at recurrence, 
particularly, the patients with TTR ≤ 6 months were twice 
the percentage of mesenchymal subtype of those with 
TTR > 6 months (65% vs. ∼30%; Fig. 3E), in accord with a 
recent report that mesenchymal GBMs tended to exhibit 
a short surgical interval [29]. Consistently, regarding the 
constructed prognostic model for PFS (i.e., Model-ours), 
the risk scores were significantly higher in the mesenchy-
mal GBMs than in the other subtypes (Additional file 5: 
Fig. S8). In addition, mesenchymal subtype was observed 
to be associated with a high level of myeloid cells [70], 
which were known to frequently emerge in the tumor 
microenvironment and polarize to promote tumorigen-
esis and immunosuppression [71]. A recent study also 
suggested the relevance of the distinct myeloid cell state 
to driving IDH-wt GBMs toward mesenchymal tumors 
in response to treatment [29]. By utilizing CIBERSORTx 
[34] based on reference cell-state signatures generated 
from the study of Johnson et al. [36], we deconvoluted 
the gene expression dataset and indeed observed a higher 
level of myeloid cells in recurrent GBMs than in primary 
ones (Additional file 5: Fig. S9). Such a trend was partic-
ularly significant for the patients with TTR ≤ 6 months 
(Additional file 5: Fig. S9), also reflecting our observa-
tions of a higher percentage of non-mesenchymal-to-
mesenchymal transition in patients with TTR ≤ 6 months 
than in those with TTR > 6 months (Fig. 3C) and a higher 
percentage of mesenchymal GBMs with TTR ≤ 6 months 
in recurrent GBMs than in primary ones (48% vs. 65%; 
Fig. 3E).

There are several caveats in this study. Since the sam-
ple size was limited for the currently available longitudi-
nal data from the patients with IDH-mutant GBM (see 
Fig. 1A), our analyses focused on the IDH-wt GBM sam-
ples. Despite the similar histology, IDH-mutant tumors 
are quite distinct from IDH-wt ones in prognostic and 
molecular features [72–74]. These two types of GBMs 
were also reported to undergo distinct cellular heteroge-
neity at recurrence [29]. It would be worthy to perform 
similar analyses in future work when a larger patient 
cohort with IDH-mutant GBM is available. In addition, 
different populations may exhibit considerably distinct 
genetic background and gene expression spectrum, lead-
ing to distinct susceptibility and progression of tumors. 
This underscores the requirement for applying our analy-
sis to local and diverse cohorts with a large sample size, 
patient-matched longitudinal data at both the transcrip-
tomic and genomic levels, and the corresponding clinical 
information (e.g., TTR or PFI) in the future. Moreover, 

while we have shown the promising predictive power of 
the constructed seven-gene prognostic model for assess-
ing PFS of primary IDH-wt GBM patients, the mechanis-
tic pathways of these gene markers in GBM at recurrence 
remain unclear and await further in-depth molecular 
biology investigations.

Conclusions
In this study, on the basis of the transcriptional expres-
sion and genotype data from patient-matched longitudi-
nal GBM samples, we observed the association of TTR 
with the differences between paired P-R IDH-wt GBMs 
at both the transcriptomic and genomic levels. Accord-
ing to our observations, we identified 55 TTR-associated 
genes and showed their potential molecular typing for 
clinic application of GBM patients. We thereby con-
structed a prognostic model with a seven-gene signature 
for predicting TTR (or PFI) of primary IDH-wt GBMs. 
The model can segregate IDH-wt GBM patients into two 
groups with significantly divergent progression-free sur-
vival outcomes and show effective power for predicting 
1-, 2-, and 3-year PFS rates in all the training set and two 
independent testing sets. This study has provided help-
ful analysis pipeline and enlightenments for evolutionary 
trajectories of longitudinal GBM samples and PFS pre-
diction of primary GBM patients.
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