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Abstract 

The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (CNS) now 
includes mesenchymal tumors that occur uniquely or frequently in the CNS. Moreover, this version has aligned the 
terminology of mesenchymal tumors with their soft tissue counterparts. New tumor types have been added, such 
as the “intracranial mesenchymal tumor, FET-CREB fusion-positive”, the “CIC-rearranged sarcoma”, and the “Primary 
intracranial sarcoma, DICER1-mutant”. Other entities (such as rhabdomyosarcoma) have remained in the current WHO 
classification because these tumor types may present specificities in the CNS as compared to their soft tissue counter‑
parts. Based on an extensive literature review, herein, we will discuss these newly recognized entities in terms of clini‑
cal observation, radiology, histopathology, genetics and outcome, and consider strategies for an accurate diagnosis. In 
light of this literature analysis, we will also introduce some potentially novel tumor types.
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Introduction
  Mesenchymal non-meningothelial tumors have always 
been included in the World Health Organization Classifi-
cation of Tumors of the Central Nervous System (WHO 
CNS5). The WHO CNS5 is based on the cell of origin 
(fibroblastic, endothelial, muscular, cartilaginous, noto-
choral or undetermined) and the advances of genetic and 
epigenetic data. The WHO CNS5 considerably modi-
fied the section on mesenchymal, non-meningothelial 
tumors. Indeed, this new version covers only tumor types 

that have special histopathological or molecular features, 
and occur uniquely in the CNS, or because they are rela-
tively common in the CNS as compared to other tissues. 
On the one hand, many tumor types, which are common 
in soft tissue and only exceptionally found in the CNS 
(such as lipoma, angiolipoma, hibernoma, liposarcoma, 
osteoma, osteosarcoma, osteochondroma, epithelioid 
haemangioendothelioma, angiosarcoma, leiomyoma, 
leiomyosarcoma, fibrosarcoma, desmoid-type fibromato-
sis, myofibroblastoma, and inflammatory myofibroblas-
tic tumor), and have been present since 2000, have been 
removed from the current classification. On the other 
hand, new histomolecular entities have been added, like 
the intracranial mesenchymal tumor, FET::CREB fusion–
positive, CIC-rearranged sarcoma, and primary intracra-
nial sarcoma, DICER1-mutant. Despite this increase in 
histomolecular deciphering, and because of this modi-
fied nosological organization within the classification, 
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the proportion of mesenchymal, non-meningothelial 
tumors in the spectrum of all CNS tumors has artificially 
decreased (Fig.  1). Reflecting this tendency, a specific 
paragraph dedicated to mesenchymal tumors was written 
in the review presenting the novel entities of the WHO 
CNS5 [1]. Based on an extensive literature review, the 
aims of this discussion are to present the clinical, radio-
logical, histopathological and molecular findings of the 
newly introduced mesenchymal tumor types found in the 
classification and novelties of previously recognized enti-
ties (Fig. 2). The last part of this review concerns poten-
tially novel subgroups described in the recent literature.

Newly introduced mesenchymal tumors in the last 
WHO classification
Intracranial mesenchymal tumor (IMT), FET::CREB 
fusion‑positive
Clinical and radiological characteristics
  IMT, FET::CREB fusion-positive tumors develop pre-
dominantly in supratentorial sites (78% of reported cases) 
[2–29] but can also be located in infratentorial sites (17% 
of reported cases) [2, 23, 25, 30–33] and in the spine 
(5% of reported cases) [11, 23, 34]. They are extra-axial, 
attached to the meninges or dura [23, 25], or are intra-
ventricular [2, 6, 15, 23, 25, 26, 28]. Presenting symptoms 
depend on the tumor’s location. Most cases occur in chil-
dren or young adults with a median age of 19 at diagnosis 
(ranging from 4 to 79 years) [2–36]. They predominantly 
affect females (representing 62% of reported cases) [2–
36]. In 21% of reported cases, a previous history of can-
cer (lymphoma or carcinoma) has been reported [2–36]. 
Radiologically, tumors are hypointense on T1-weighted 
sequences and are variably intense on T2-weighted 
images [25]. Lesions present an enhanced tissular por-
tion, and lobulated contours with frequent cystic compo-
nents [25]. Contrary to meningiomas, a dural tail is rarely 

observed [25]. The clinical behavior of these tumors 
seems to be heterogeneous: a subset of cases have aggres-
sive outcomes with local recurrences [6, 13, 21–23, 25, 
28, 29, 33], metastases [11, 18, 23, 36] and 8% of reported 
patients have died from the disease [18, 23, 36] (Fig. 3).

Histopathology and cellular origin
  These tumors are multinodular and well-circumscribed 
from the brain parenchyma, frequently surrounded by a 
fibrous pseudocapsule. Dense lymphoplasmacytic cuff-
ing at the tumor periphery or intratumoral lymphop-
lasmacytic infiltrates are typically observed. The stroma 
may be collagenous (with amianthoid fibers), myxoid or 
mucin-poor (Fig.  4A, B) [22, 23, 25]. The cellular den-
sity is variable and different patterns have been reported 
(from syncytial or sheet-like growth to reticular cord-like 
structures) [22, 23, 25]. Tumor cell morphology varies 
from epithelioid/rhabdoid cells to stellate/spindle cells or 
monotonous round cells (Fig. 4A, B) [22, 23, 25]. Mitotic 
activity is generally low but cases with high prolifera-
tive indexes have been described at diagnosis or during 
recurrence [23, 25, 36]. Morphological features reminis-
cent to meningiomas (such as intranuclear cytoplasmic 
inclusions and whorls) have been noted [22, 23, 25]. Cal-
cifications (but no psammoma bodies), osseous metapla-
sia and a pseudochondroid matrix may be exceptionally 
observed [25]. Using immunohistochemistry, CD99, 
CD68, desmin and EMA are frequently expressed in vari-
ous ways (focal to diffuse) (Fig. 4C) [22, 23, 25]. SSTR2a is 
not stained or only focally on tumor cells [23, 25]. Ultra-
structural analyses revealed, in one study, the presence 
of junction-type desmosomes, zonula occludens, zonula 
adherens, suggesting an arachnoidal origin for tumor 
cells [25]. These results and DNA-methylation profil-
ing analyses have demonstrated that IMT, FET::CREB 
fusion-positive are distinct from angiomatoid fibrous 

Fig. 1  Evolution of the proportion of the number of mesenchymal tumors in the World Health Organization Classification of Central Nervous 
System according to the versions. CNS central nervous system
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histiocytomas of soft tissue [23, 25]. Therefore, the pro-
posed terminology of the WHO classification is provi-
sional and has to be improved.

Molecular characteristics
The molecular hallmark of IMT is represented by a 
fusion of a FET gene with genes from the CREB (cAMP 

response element) family genes. In the FET family genes, 
fusions reported in IMT encompass mostly EWSR1 
(97% of reported cases) [2–24, 26–35] while FUS was 
only reported in one case [23] and no fusion implicat-
ing TAF15 gene has been reported to date. These data 
make the fluorescence in  situ hybridization for EWSR1 
a potentially useful diagnostic tool when histology is in 

Fig. 2  Summary of clinical, histopathological and molecular findings of the new mesenchymal tumor types of the World Health Organization 
and novelties of previously recognized entities. Chord. chordoma, F female, IMT intracranial mesenchymal tumor, M male, Rhabdomyosarc. 
rhabdomyosarcoma, YO years old
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line with a diagnosis of IMT (Fig.  4D). From the CREB 
family genes, CREB1, CREM and ATF1 are equally dis-
tributed (representing 31, 36 and 33% of partner genes 
respectively) in fusions encountered in IMT [2–36], con-
trary to other extra-CNS tumors with FET::CREB fusion 
(like angiomatoid fibrous histiocytomas of the soft tissue 
having more than 80% of reported cases described with 
an EWSR1::CREB1 fusion). Whereas no methylation class 
exists in the DKFZ classifier of CNS tumors (v12.5), two 
recent studies have shown that IMT, FET::CREB fusion-
positive are characterized by a distinct epigenetic profile 
from other tumors of the CNS, but do not represent an 
homogeneous methylation class [23, 25]. One of them 
suggests that they are subdivided into two methylation 
groups (A and B) [23]. Further studies are needed to 
clearly delineate the epigenetic boundaries of IMT and 
their clinical or prognosis implications.

Diagnostic criteria
The WHO CNS5 established the following essential diag-
nostic criteria for IMT, FET::CREB fusion-positive: 1/ 
primary intracranial location; 2/ variable morphologi-
cal features including spindle cells, mucin-rich stroma, 
haemangioma-like vasculature, or epithelioid cells in a 
mucin-poor collagenous stroma; 3/ demonstration of a 
FET::CREB family fusion.

CIC‑rearranged sarcoma
Clinical characteristics
Most CIC-rearranged sarcomas of the CNS occur in 
supratentorial sites (85% of reported cases) [37–46] 
whereas spinal presentation accounts for 15% of reported 
cases [42, 46–48]. Presenting symptoms depend on the 
tumor’s location [37, 39, 44, 46]. There is a wide age range 

at presentation, from children to elderly adults (ranging 
from 0 to 71) [37–48]. However, there is a striking pre-
dilection for children and young adults (median age: 10 
years), and 68% of cases are found in the pediatric age 
group [37–48]. There is no gender predisposition (sex 
ratio male/female of 1.2) [37–48]. Radiological data are 
scarce in the literature and limited to case reports [37–
39, 43, 44, 47–49]. Tumors seem to manifest as a paren-
chymal hematoma (50% of reported cases) [37, 39, 44, 49] 
or as a solid and cystic mass (38% of reported cases) [38, 
43, 47]. Like their soft tissue counterparts, most tumors 
follow an aggressive course with frequent recurrences 
(61% of reported cases), most commonly local [37–41, 
43–48], resulting in death (38% of reported cases) [37–
45, 47–49].

Histopathology and cellular origin
These tumors are well-circumscribed from the brain 
parenchyma. They are mainly composed of diffuse sheets 
or lobules of undifferentiated round cells, epithelioid or 
even rhabdoid cells [37, 39, 41, 42, 44, 46–49]. Divergent 
differentiations (chondroid, glioneuronal with neuropil) 
have been described, which explain why some tumors 
were initially diagnosed as pleomorphic xanthoastro-
cytomas or gangliogliomas [38, 40, 44]. Similar glial/gli-
oneuronal differentiation has not been reported to date 
in soft tissue counterparts with CIC-fusions [1–10]. A 
collagenous stroma or focal myxoid changes may be pre-
sent in the tumor (Fig. 4E–H) [39, 43, 44, 46–49]. Necro-
sis is common and mitotic activity is brisk [37, 42, 44, 46, 
47, 49]. When evaluated by immunohistochemistry, CIC-
rearranged sarcomas may express, only focally or in a 
subset of tumor cells, markers of various differentiations 
(such as GFAP, CD56, synaptophysin, neurofilament, 
CKAE1/AE3, PS100, desmin, smooth muscle actin) [37, 
38, 40, 44, 46–48]. A CD99 immunoexpression, which is 
frequently observed in their soft tissue counterparts, is 
focal or absent in CNS cases [37, 39, 46–48]. As in soft 
tissue [50, 51], WT1 and ETV4 are frequently positive 
and represent useful ancillary markers (Fig. 4H) [37, 39, 
47, 49] and one recent study has shown its high sensi-
tivity and specificity in the CNS compared to its other 
potential differential diagnoses [52]. Sarcomas with 
CIC::NUTM1 fusions express NUT protein [42, 45]. The 
main differential diagnosis in the CNS is represented by 
the atypical teratoid and rhabdoid tumor which is eas-
ily ruled out by using immunohistochemistry staining 
for INI1 and BRG1. Although the cell of origin of CIC-
rearranged sarcomas is still unknown, the fact that soft 
tissue and CNS tumors share the same DNA-methylation 
profiling is suggestive of a common mesenchymal origin 
[43].

Fig. 3  Results of the meta-analysis and prognostic data of IMT, 
FET::CREB-fused. Results of the meta-analysis including 72 IMT, 
FET::CREB-fused. Kaplan–Meier estimates of overall survival (OS) and 
event free survival (PFS). The median OS is not reached. The median 
EFS is 11 months. IMT intracranial mesenchymal tumor
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Molecular characteristics
Whereas CIC::DUX4 fusion is encountered in 95% of 
CIC-rearranged sarcomas of the soft tissue, the molecu-
lar spectrum of CNS cases seems to be larger with dif-
ferent fusion partners: CIC::LEUTX (29%) [38, 40, 48], 
CIC::NUTM1 (29%)[42, 45], CIC::DUX4 (18%) [37, 46, 
47], ATXN1::DUX4 (12%) [43, 49], ATXN1::NUTM1 
(6%) [44], and a frameshift deletion of the CIC gene (6%) 
[45]. Whereas CIC::LEUTX and CIC::NUTM1 have also 
been reported in a subset of CIC-rearranged sarcomas 
[42, 53], fusions implicating the ATXN1 gene seem to be 
only encountered in CNS tumors. Whatever the type of 
fusion, a recent study has evidenced that CIC-rearranged 

sarcomas and ATXN1-rearranged sarcomas of the CNS 
share the same DNA-methylation signature and are not 
distinct from their soft tissue counterparts [43]. How-
ever, further series comparing CNS (particularly those 
showing glial/glioneuronal differentiation) and soft tissue 
tumors are needed to confirm these data.

Diagnostic criteria
The WHO CNS5 listed the following essential diagnostic 
criteria: 1/ evidence of a CIC gene fusion; 2/ predominant 
round cell phenotype; 3/ mild nuclear pleomorphism; 4/ 
variable admixture of epithelioid and/or spindle cells; 4/
variably myxoid stroma; 5/ variable CD99 and frequent 

Fig. 4  Histopathological and molecular findings of the new mesenchymal tumor types of the World Health Organization and novelties of 
previously recognized entities. A Epithelioid cells in a myxoid stroma with amianthoid fibers and scattered lymphocytes (HPS, magnification × 
400). B Spindle and epitheliod cells (HPS, magnification × 400). C Desmin immunoexpression (magnification × 400). D EWSR1 rearrangement 
using FISH analysis showing split signals (3’EWSR1: red signals; 5’EWSR1: green signals). E Sheets of epithelioid cells (HPS, magnification × 400). 
F Myxoid change (HPS, magnification × 400). G Spindle cells and glial differentiation (HPS, magnification × 400). H Diffuse expression of ETV4 
(magnification × 400). I Spindle cell neoplasm with fascicular pattern (HPS, magnification × 400). J Myogenic differentiation (HPS, magnification 
× 400, and insert desmin immunoexpression, magnification × 400). K Pleomorphic cells (HPS, magnification × 400). L Expression of myogenin 
(magnification × 400). M Sheets of poorly differentiated cells (HPS, magnification × 400). N Myogenic differentiation (HPS, magnification × 400). 
O Olig2 immunoexpression described in cases with PAX3 fusions (magnification × 400). P Myogenin immunoexpression (magnification × 400). 
Q Epithelioid cells (HPS, magnification × 400). R Spindle cells (HPS, magnification × 400). S Brachyury immunoexpression (magnification × 400). 
T Loss of INI1 expression in tumor cells (magnification × 400). Black scale bars represent 50 μm. Ch. chordoma, FISH fluorescent in situ hybridization, 
HPS hematoxylin phloxin saffron, IMT intracranial mesenchymal tumor, Rhabdomyos. rhabdomyosarcoma, sarc sarcoma
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ETV4 and WT1 expression. The DNA-methylation pro-
file for CIC-rearranged sarcoma is a desirable diagnostic 
criterion.

Primary intracranial sarcoma, DICER1‑mutant
Clinical characteristics
As its name suggests, the primary intracranial sarcoma, 
DICER1-mutant is almost exclusively encountered in 
supratentorial sites (92% of reported cases) [54–63]. 
However, exceptional infratentorial and spinal cases 
have been reported [54, 56, 58, 64]. Presenting symp-
toms depend on the tumor’s location. There is a wide 
age range at presentation, from children to elderly adults 
(ranging from 0 to 76) [54–64]. However, there is a strik-
ing predilection for children and young adults (median 
age: 6 years), and 87% of cases occur in the pediatric 
age group [54–64]. The gender distribution is almost 
equal (sex ratio female/male of 1.3) [54–64]. Radiologi-
cal data are scarce in the literature and limited to case 
reports [57, 59–63]. The primary intracranial sarcoma, 
DICER1-mutant seems to present as a solid and cystic 
mass, with hemorrhage and leptomeningeal attach-
ment, hypointensity on T1-weighted sequences, hyper-
intensity on T2-weighted images and a heterogeneous 
enhancement after gadolinium injection. Further series, 
including a radiological description of proven primary 
intracranial sarcoma, DICER1-mutant is needed to con-
firm these features. While the prognosis for patients with 
DICER1-mutant primary intracranial sarcoma remains to 
be determined, the literature data (36 cases) showed that 
33% of patients presented local recurrences and that 86% 
of them are alive at the end of follow-up [54–57, 59–64]. 
A recent study has evidenced that a combination of sur-
gery, chemotherapy, and radiotherapy seems to be ben-
eficial in the treatment of this sarcoma subtype [56].

Histopathology
DICER1-mutant primary intracranial sarcomas are 
mainly well-circumscribed tumors from the brain paren-
chyma and may present a leptomeningeal component. 
Histopathologically, they are pleomorphic or composed 
of spindle cells arranged in fascicules or a patternless 
growth [54, 55, 57–63, 65, 66]. A rhabdoid morphology 
or a myogenic differentiation (evidenced using desmin 
and/or myogenin markers) is frequently observed 
(Fig.  4I–L) [54, 55, 57–60, 62, 63, 65, 66]. The stroma 
may be myxoid and/or chondroid [54, 55, 57, 58, 62, 63, 
65, 66]. Cytoplasmic eosinophilic globules PAS-positive 
are often present [54, 57, 59, 62, 63]. Using immunohis-
tochemistry, they frequently express myogenic mark-
ers (desmin, smooth muscle actin, and occasionally 
myogenin), with variable intensity (focal or patchy) [54, 
55, 57–64]. Because of the expression of S100 proteins, 

synaptophysin and neurofilament and the wide variety of 
differentiation (including lipomatous and pseudo-meiss-
nerian components), a potential neural crest lineage 
has been suggested [63, 64]. A subset of reported cases 
has evidenced a p53 overexpression and a loss of ATRX 
expression [59, 61, 64]. GFAP, Olig2, and cytokeratins are 
not expressed [54, 55, 59–63]. DICER1-mutant primary 
intracranial sarcomas may present a complete or mosaic 
loss of H3K27me3 [54]. TLE1 immunopositivity has 
been suggested as a potential diagnostic surrogate [54], 
but the sensitivity and specificity of this biomarker needs 
to be studied in CNS tumors. Neoplasms from other 
organs showing a myogenic differentiation and harboring 
DICER1 alterations have been reported in the literature 
(pleuropulmonary blastoma-like peritoneal sarcomas, 
DICER1 renal sarcomas and rhabdomyosarcomas of the 
urogenital tract with DICER1 mutations) [67–69], but 
their relationship (including epigenetic data) has to be 
elucidated before suggesting a potential unified terminol-
ogy [70, 71].

Molecular characteristics
A DICER1 alteration is encountered in 98% of reported 
case [54–64] (only two cases proven by DNA-methyl-
ation profiling failed to reveal any mutation [56, 58]). 
DICER1-mutant primary intracranial sarcomas are char-
acterized by a biallelic alteration of the DICER1 gene 
combining a hotspot missense mutation on one allele and 
a truncating mutation (frameshift, nonsense, or splice-
site) on the other [58]. Some tumors (5% of reported 
cases) harbor a single mutation accompanied by loss of 
heterozygosity eliminating the remaining wildtype allele 
[59, 63, 66]. A part of reported patients (26% of reported 
cases with available constitutional data) have a germline 
alteration of DICER1, as part of DICER1 syndrome, and 
rare cases have been reported with a familial history of 
cancers (gynecological cancers) [55, 57, 58, 60, 64, 65, 
72]. Primary intracranial sarcomas, DICER1-mutant pre-
sent a high level of tumor mutational burden. Indeed, 
associated with DICER1 alterations, recurrent muta-
tions in the MAP-kinase pathway (mainly KRAS, NF1 
and NRAS genes) and TP53 gene have been reported in 
64% [54, 56–59, 63, 64, 72] and 60% of reported cases [54, 
56–59, 62, 63, 72]. DICER1-mutant primary intracranial 
sarcoma harbors a distinct DNA methylation profile in 
the v12.5 version of the CNS tumor classification [58]. 
However, an epigenetic overlap with extracranial sarco-
mas harboring DICER1 mutation remains undetermined.

Diagnostic criteria
The current WHO classification has listed the following 
essential diagnostic criteria: 1/ primary intracranial sar-
coma; 2/ pathogenic DICER1 mutation (either germline 
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or somatic). For unresolved lesions, the DNA-methyla-
tion profile for primary intracranial sarcoma, DICER1-
mutant is mandatory.

New insights for well‑known tumors
Rhabdomyosarcomas
Very few CNS cases in the literature have detailed his-
topathological and molecular characterizations. As 
reported in soft tissue, primary CNS alveolar rhabdo-
myosarcomas present fusions implicating PAX3 and 
FOXO1 genes (Fig. 4M–P) [73–76]. It has been evidenced 
that these fusions induce Olig2 expression by tumor cells, 
making this diagnosis challenging in the CNS (Fig.  4O) 
[75, 76]. Primary CNS alveolar rhabdomyosarcomas 
with proven FOXO1 or PAX3 fusions typically con-
cern children and young adults with a pineal (3 cases) 
or a posterior fossa mass (1 case) [73–76]. In the pineal 
location, differential diagnoses of pediatric tumors with 
myogenic differentiation include atypical rhabdoid and 
teratoid tumors, medulloblastoma with divergent differ-
entiations (particularly medullomyoblastoma), teratomas 
with a rhabdomyosarcomatous component, pineal anlage 
tumors and pineoblastomas with rhabdomyoblastic dif-
ferentiation. These diagnoses may be obtained using 
clinical data, histopathology and immunohistochem-
istry. Data concerning the outcomes of cases proven 
molecularly are scarce and further reports are needed. 
The WHO CNS5 has listed the following essential diag-
nostic criteria: 1/ a malignant primitive tumour with at 
least focal immunohistochemical demonstration of skel-
etal muscle lineage; 2/ absence of non-rhabdomyosarco-
matous components. The confirmation of a FOXO1 gene 
fusion in diagnostically difficult cases is needed.

Chordomas
Chordomas have reappeared as a specific taxonomic cat-
egory in the current WHO classification [1]. This nosol-
ogy clearly distinguishes four clinicopathological forms 
of chordomas: conventional, chondroid, dedifferentiated 
(which have historically represented the pejorative evolu-
tion of a classical chordoma following radiation therapy) 
and the poorly differentiated chordoma, SMARCB1-defi-
cient. This last subtype mainly concerns children (86% 
of reported cases) with a median age of 7 (varying from 
1 to 42 years-old) [77–93]. There is a slight female pre-
dominance (female to male ratio: 1.5) [77–93]. They are 
mainly located in the skull base (64% of reported cases) 
but may be encountered in the sacroccygeal region (27% 
of reported cases) or more rarely in the mobile vertebral 
column (9% of reported cases) [77–93]. Histopathologi-
cally, they are composed of cohesive sheets of epithe-
lioid or spindle cells without chondromyxoid stroma 
and without physaliphorous cells (Fig. 4Q–R) [77–93]. A 

subset of cases having a classical morphology and INI1 
loss have been reported and it remains uncertain if they 
represent the same clinicopathological type as the poorly 
differentiated form [77, 78, 93]. A diagnosis is made using 
the combination of a brachyury expression and the loss 
of INI1 protein immunoreactivity (Fig.  4S–T). It has 
been evidenced that poorly differentiated chordomas, 
SMARCB1-deficient are associated with a poor outcome 
with high rates of metastases (30% of reported cases) and 
death (43% of reported cases) [77–93]. To date, no dis-
tinct methylation class exists in the current version of 
the DKFZ classifier (v12.5). However, recent work that 
studied a cohort of CNS tumors with SMARCB1 defi-
ciency showed that poorly differentiated chordomas, 
SMARCB1-deficient constitute a different cluster [94]. 
The WHO CNS5 listed the following essential diagnos-
tic criteria: 1/ a midline axial bone tumor; 2/ Lobules of 
cohesive and physaliphorous cells in a myxoid or chon-
droid matrix; 3/ Brachyury immunopositivity. In the case 
of epithelioid/solid forms, a loss of SMARCB1 (INI1) 
expression to confirm the diagnosis of poorly differenti-
ated chordoma is mandatory.

Emerging entities
Dural angioleiomyomas
  Angioleiomyomas are well-known in the soft tissue and 
are classified within pericytic (perivascular) tumors in 
the WHO CNS5 (Fig. 5A–D) [95]. In the literature, dural 
presentations of a cavernous subtype of angioleiomyomas 
have been reported and a recent study performed a com-
prehensive clinicoradiologic and molecular characteri-
zation of a series [96]. Dural angioleiomyomas present 
clinical (affecting adults between the fourth and the sixth 
decades), and radiological similarities to soft tissue angi-
oleiomyomas (such as hyperintensity on T2-weighted 
images and a strong enhancement after contrast injec-
tion) [96]. A subset presented the same p.Gly41Cys GJA4 
mutation, recently reported in other vascular lesions 
from different organs (liver, skin, orbit, soft tissue) [96–
98]. Moreover, DNA methylation profiles indicate that 
dural angioleiomyomas grouped together and formed 
a distinct epigenetic group, separating them from the 
clusters of soft tissue angioleiomyomas, other vascular 
tumors, inflammatory myofibroblastic tumors and men-
ingiomas. The extensive literature review identified sev-
eral cases similar to these lesions, with a wide variety 
of denominations (mainly named as cavernous heman-
giomas and veinous hemangiomas). Because of its dural 
location and distinct methylome profile, a potential ter-
minology to designate this benign tumor could be “dural 
angioleiomyoma”. Further studies are needed to confirm 
its inclusion in a future version of the WHO classification 
of CNS tumors.
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Spindle cell neoplasms, NTRK‑rearranged
NTRK gene fusions have been described in a wide variety 
of CNS and soft tissue tumors, including the provisional 
tumor type “spindle cell neoplasm, NTRK-rearranged” 
(SCN-NTRK), added to the 2020 WHO Classification 
of Soft Tissue Tumors. Because of histopathological and 
molecular overlaps with other soft tissue entities, con-
troversy remains concerning the lineage and terminol-
ogy of SCN-NTRK. Rare CNS primary presentations of 
SCN-NTRK have been reported in the literature [99–
101]. A recent series including soft tissue and CNS cases 
revealed similar histopathological, immunophenotypical, 
and molecular (spindle cell tumors with coexpression of 
CD34 and S100 and a CDKN2A homozygous deletion) 
features and formed a unique and new methylation clus-
ter (Fig.  5E–H) [101]. These tumors are predominately 
found in children and young adults [99–101]. While a 
recent study evidenced that SCN-NTRK share similar 
features in all locations, SCN-NTRK are probably under-
diagnosed, and further cases of CNS SCN-NTRK are 
needed to confirm or not their place in the next WHO 
Classification of CNS tumors.

Conclusion
Several mesenchymal non-meningothelial tumors have 
now been defined by specific molecular alterations, with 
some being exclusive to the CNS. In this respect, the 
WHO CNS5 represents an extension of the changes first 
introduced by the former edition. The increased preci-
sion in decipherment was achieved by novel genetic and 
DNA-methylation diagnostic technologies. The utility 
of this last methodology is particularly interesting for 

mesenchymal tumors because of the existence of two 
different classifiers (one for brain tumors and one for 
soft tissue tumors). This increased complexity reflects 
our current understanding of biological features of CNS 
tumors. However, great effort is now necessary to 1/ 
compare them to their extra-CNS counterparts; 2/ to 
more precisely characterize the clinical and radiologi-
cal aspects and outcomes of these new tumor types, and 
eventually 3/ to determine a grading (no grade is cur-
rently associated with these novel tumor types) to adapt 
therapeutic approaches in the future.
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