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Abstract 

Automatic segmentation of rodent brain tumor on magnetic resonance imaging (MRI) may facilitate biomedical 
research. The current study aims to prove the feasibility for automatic segmentation by artificial intelligence (AI), and 
practicability of AI-assisted segmentation. MRI images, including T2WI, T1WI and CE-T1WI, of brain tumor from 57 
WAG/Rij rats in KU Leuven and 46 mice from the cancer imaging archive (TCIA) were collected. A 3D U-Net architec-
ture was adopted for segmentation of tumor bearing brain and brain tumor. After training, these models were tested 
with both datasets after Gaussian noise addition. Reduction of inter-observer disparity by AI-assisted segmentation 
was also evaluated. The AI model segmented tumor-bearing brain well for both Leuven and TCIA datasets, with Dice 
similarity coefficients (DSCs) of 0.87 and 0.85 respectively. After noise addition, the performance remained unchanged 
when the signal–noise ratio (SNR) was higher than two or eight, respectively. For the segmentation of tumor lesions, 
AI-based model yielded DSCs of 0.70 and 0.61 for Leuven and TCIA datasets respectively. Similarly, the performance 
is uncompromised when the SNR was over two and eight respectively. AI-assisted segmentation could significantly 
reduce the inter-observer disparities and segmentation time in both rats and mice. Both AI models for segmenting 
brain or tumor lesions could improve inter-observer agreement and therefore contributed to the standardization of 
the following biomedical studies.
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Introduction
Malignant brain tumor, both primary and metastatic 
lesions, have long been an unsolved clinical problem, 
due to highly progressive characteristics and limited 
therapeutics [19, 20, 23, 24]. Development of novel 
therapeutics for brain tumor is an urgent need. Due to 
its capabilities for precise intracranial localization and 

superb soft tissue contrast, MRI represents a powerful 
tool to provide in vivo and non-invasive visualization of 
brain tumor anatomy and functionality in both clinics 
and animal research [23]. Quantitative imaging analyses 
including radiomics, MRI-based surgical planning, and 
radiotherapy design are highly dependent on the proper 
segmentation of the brain tumor lesions, which is con-
ventionally finished by well-trained radiologists [17]. 
However, segmentation by humans is time-consuming 
and, furthermore, inter-observer variability may be intro-
duced during this process.

Empowered by state-of-the-art artificial intelligence 
(AI) algorithm, automatic semantic segmentation of 
region of interest (ROI) becomes possible with reduced 
inter-observer disparity [2]. U-Net is dedicated convo-
lutional neural network (CNN) for biomedical image 
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segmentation by an encoder/decoder structure that inte-
grates multiscale information and shows better gradi-
ent propagation [18, 25]. The 2D U-net can capture MRI 
image features and return a probability map for each 
pixel to be classified as ROI or not. However, it only cap-
tures in-plane image texture, leaving behind trans-plane 
information [9, 18]. To overcome this, a “2.5D” model 
was adopted by including few neighboring slices as a 
compromised manner and proven to show improved per-
formance as expected [5]. Whereas, 3D U-net takes into 
account of the cross-plane information natively, aiming 
to simulate the way how radiologists interpret medical 
images [3].

In preclinical imaging studies, rodent brain extraction 
is often achieved by manually drawing brain masks for 
each slice. Previously, Hsu et al. proposed AI models for 
segmentation of brain in T2-weighted turbo-spin-echo 
structural MRI and T2*-weighted echo-planar-imaging 
functional MRI images from normal mice model based 
on 2D U-net and 3D U-net architectures [9, 10]. How-
ever, these models fail to reproduce properly in the onco-
logical settings due to the presence of brain tumor and 
tumor-accompanying signs like ventriculomegaly and 
distorted brain morphology. Currently there is no study 
proposing models dedicated for the segmentation of 
brain tumor in rodents. To this end, this study is designed 
to explore: (1) feasibility of AI-based segmentation of 
tumor-bearing brains and brain tumors in rodents; and 
(2) practicability of AI-assisted segmentation. To make 
such tasks more applicable, we have developed two AI-
based models, which finish the semantic segmentation in 
a stepwise way. The model 1 is responsible for segmenta-
tion of tumor bearing brain from head and neck region, 
whereas the model 2 is for segmentation of tumor(s) 
from the brain. Hopefully, the successful development of 
these models may reduce inter-observer disparity, save 
researchers’ time, and automate the processing of MRI 
data from brain volumetric dataset.

Method
The study was executed as shown in Fig.  1, including 
image acquisition, data preparation, model training and 
model validation.

Collections of datasets
For the Leuven dataset, the animal model of metastatic 
brain tumor was constructed with proper laboratory 

animal care, after ethical committee approval of KU Leu-
ven (P046/2019) (Fig.  1A). Rat rhabdomyosarcoma cell 
line, kindly provided by Lab of Nanohealth and Optical 
Imaging group in KU Leuven, was cultured with 10% 
FBS and 1% penicillin/streptomycin at 37 °C in a 5% CO2 
atmosphere in DMEM (Gibco, USA). The contamination 
of mycoplasma was excluded by e-Myco PCR kit (Boca 
Scientific, USA). The cell line was chosen based on the 
following considerations. Firstly, it is natively compatible 
with immune competent WAG/Rij rats, where reproduc-
tion of cancer-immunity interaction is possible. Secondly, 
its derived animal model exhibits similar MRI manifes-
tation with clinical patients [22]. Thirdly, we aimed at 
developing models for brain or brain tumor segmenta-
tion, instead of elaborating on the biological disparity 
between different types of brain metastasis. The brain 
metastasis model was induced by surgical implantation, 
as published before [22].

MRI scans were performed using a 3.0T magnet 
(MAGNETOM Prisma; Siemens, Erlangen, Germany), 
with a 16-channel phase array wrist coil under gas anes-
thesia of a mixture of 3% isoflurane, 80% air and 17% 
oxygen, with the MRI sequences optimized from clini-
cally used ones (Table 1). To ensure generalizability and 
translation potential, the commonly used sequences 
were adopted, including T1 weighted imaging (T1WI), 
T2 weighted imaging (T2WI) and contrast-enhanced T1 
weighted imaging (CE-T1WI). These sequences provide 
high-resolution and not-distorted anatomical informa-
tion in the brain. To increase the generalizability of the 
model, cases with various sizes of tumors, cases with/
without ventriculomegaly, cases with intra-tumoral 
necrosis were included. Cases with missing/unsatisfac-
tory MRI images were excluded.

The Cancer Imaging Archive (TCIA) dataset consists 
of MRI images (Philips 3.0T magnet, the Netherlands) 
from genetically engineered mouse models of high-grade 
astrocytoma, including glioblastoma multiforme and sur-
gically implanted orthotopic model based on U87 cell 
lines. In the genetically engineered mouse models, the 
most dysregulated networks in glioblastoma multiforme 
including RB, KRAS and PI3K signaling are perturbed. 
These genetic aberrations induce development of mouse 
high-grade astrocytoma like that in humans. Thus, the 
TCIA dataset is more diverse in terms of tumor induc-
tion methods, pathological and genetic profiles. Two out 
of 48 cases were excluded from the TCIA dataset due to 

(See figure on next page.)
Fig. 1  Flow chart and 3D U-Net architecture for current study. Collection and allocation of both data for model training, validation and test (A). 
All these data were manually segmented and pre-processed (B), followed by data augmentation and model training (C). The trained models were 
challenged by images with Gaussian noise added, measured quantitatively (D). AI-assisted segmentation was demonstrated based on ground 
truth by two radiologists (D). The same 3D U-Net architecture for training the two models was shown (E). Abbreviations: AI: artificial intelligence; RV: 
relative ratio; HD: Hausdorff distance; MSD: mean surface distance; DSC: Dice similarity coefficient
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incompleteness of sequences (Fig. 1). Cases with ambigu-
ous tumor lesion were excluded from model training.

A total of 46 cases from TCIA and 57 cases from Leu-
ven dataset respectively were included. For model 1 that 
is responsible for segmentation of tumor bearing brain, 
a total of 57 cases were collected in KU Leuven, with 46 
for training and 11 for validation. A total of 46 cases were 
collected in TCIA, with 28 for training and 18 for vali-
dation. For model 2 that is responsible for segmentation 
of brain lesions, a total of 48 cases were collected in KU 
Leuven, with 40 for training and 8 for validation. 42 cases 
were collected in TCIA, with 30 for training and 12 for 
validation.

Manual segmentation
Generation of ground truth for both Leuven and TCIA 
datasets, facilitated by intensity-based thresholding and 
region-growing algorithms, was finished in ITK-SNAP 
(http://​www.​itksn​ap.​org) by two co-authors, Yuanbo 
Feng, and Yicheng Ni, with more than 10 years of experi-
ence in experimental and clinical radiology (Fig. 1B) [26]. 
The segmentations of the brain and tumor were finished 
separately. Segmentation of brain was mainly based on 
T2WI and propagated to other sequences. Tumor seg-
mentation was mainly based on CE-T1WI, with reference 
information from other sequences. For each segmenta-
tion task (either brain or tumor), Yicheng Ni and Yuanbo 
Feng performed segmentation independently, and con-
sensus was achieved after discussion whenever there was 
a disagreement.

AI model architecture
We adopted a stepwise solution for the segmentation 
tasks: firstly, developing a model for segmentation of 
tumor-bearing brain from the images of head and neck 

region; and secondly, developing a model for segmenta-
tion of tumor from the brain images for both datasets 
(Fig. 1C). These models are named as model 1 (segmen-
tation of tumor-bearing brain) and model 2 (segmenta-
tion of brain tumor). The adoption of step-wise solution 
is based on consideration of future applications. Segmen-
tation of only the brain tissue, namely skull stripping, 
highlights brain morphology. In quantitative imaging 
analyses, intra-individual comparison between brain 
tumor and contralateral brain tissue is widely adopted. 
So, the contralateral brain tissue can be easily segmented 
if both segmentations of brain and tumor have been 
achieved.

The models were optimized from the basic 3D U-Net 
architecture (Fig. 1E) [3]. The network weights were ini-
tially set with the Adam optimizer and a learning rate of 
10−4. A loss function based on dice loss and focal loss 
was adopted to solve the issue of imbalanced class due to 
minor volume of ROI. The loss function put weights of 
0.75 and 0.25 respectively on ROI and non-ROI voxels.

Model training and validation
To train our 3D U-Net models [3], we first established a 
training dataset by random selection, with the remaining 
data as test dataset. Before the training, data preproc-
essing was performed, including intensity normaliza-
tion and isotropic resampling by B-spline interpolation 
to isotropic 0.5 mm. Data were augmented by rotations 
for certain times of 90 degrees, vertical and horizontal 
flips. Since previous studies have illustrated that a big-
ger patch size is generally associated with superior model 
performance [6, 9], here, a patch size of 64 × 64 × 64 is 
selected due to the trade-off between run time, resource 
constraint and information loss. To confirm the applica-
bility in different MRI settings, training and validation 

Table 1  Summary of MRI scanning parameters

T2WI: T2 weighted imaging; T1WI: T1 weighted imaging; TE: echo time; TR: repetition time

Protocol Leuven-T2WI Leuven-T1WI TCIA-T2WI TCIA-T1WI

Sequence SE SE SE GR

TE 147 700 100 4.188

TR 3000 9.0 6132 20.5

Voxel size (mm^3) 0.29*0.29*0.43 0.21*0.21*0.43 0.12 × 0.12 × 0.50 0.12 × 0.12 × 0.25

Matrix size 192 × 192 × 80 256 × 256 × 80 256 × 256 × 30 256 × 256 × 48

Field of view (mm) 55 × 55 55 × 55 30 × 30 30 × 30

Plane Coronal Coronal Transverse Transverse

Average 1 2 8 4

Flip angle 120 120 90 25

Band width 260 435 152 169

Magnetic field 3T 3T 3T 3T

Animal species Rats Rats Mice Mice

http://www.itksnap.org
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were performed in two MRI datasets: Leuven and TCIA 
datasets, with noise-added images for extra validation 
(Fig. 1D) [4, 12]. For the noise addition, Gaussian white 
noise was added with different levels of sigma values from 
1 to 15, with a step of 1 after normalization of images into 
the range 0–255. Contralateral normal brain tissue and 
background areas on T2WI images were selected for the 
calculation of signal–noise-ratio (SNR) (Additional file 1: 
Fig. S1). The SNR for both datasets was decreased to 1, 
when the sigma value is around 15 (Additional file 1: Fig. 
S2).

Quantitative evaluation of AI performance
Dice similarity coefficient (DSC) was adopted to quan-
tify the volume-based similarity between ground truth 
and AI-derived segmentation [29]. The overlapping area 
between them is proportional to the DSC value, which 
is always between 0 and 1. Volume ratio (RV) computes 
the ratio of the ROI volumes from two segmentations, 
defined as RV (seg1, seg2) = V1/V2, where V1 and V2 
are the volumes of two segmentations. Mean surface dis-
tance (MSD) and Hausdorff distance (HD) are designed 
to measure the surface-based difference between two 
segmentations [7]. MSD computes the average distance 
between the two segmentation surfaces, whereas HD 
computes the largest distance between them.

where p: pixel; S, S′: surface of model segmentation and 
ground truth, d(p, S′): minimum Euclidean distance 
between p and all pixels p′ on surface S′

Practicability of AI‑assisted segmentation
To illustrate whether AI-assisted segmentation can 
reduce the inter-observer disparity, inter-observer dis-
parity on fully human segmentations was compared with 
the disparity of AI-assisted segmentations. The inter-
observer disparity was calculated by comparing the dif-
ference of native masks from two radiologists (Yicheng 
Ni and Yuanbo Feng). While the disparity of AI-assisted 
segmentations was calculated by comparing masks that 
were first generated by AI models and then modified by 
the two radiologists. Additionally, the time between de 
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novo manual segmentation and AI-assisted segmentation 
was also compared.

Results
Exemplified images from Leuven and TCIA datasets
As shown in Fig.  2, hyperintense brain tumor was 
observed on T2WI and CE-T1WI, with hypointense 
lesions on T1WI, compared with contralateral brain tis-
sue in both Leuven and TCIA datasets. Additionally, 
tumor occupying signs like ventriculomegaly, and mid-
line-shift of the brain were also observed. However, there 
were some disparities between the two datasets, in terms 
of scanning parameters, signal intensity after contrast 
agent injection, field of view, and animal species (Table 1). 
Specifically, in Leuven dataset, the entire head and neck 
region was captured with larger head sizes and more 
clearly bordered tumors, compared with TCIA dataset. 
Most cases in TCIA dataset are poorly enhanced on CE-
T1WI, compared with all well-enhanced CE-T1WI in 
Leuven dataset. The volume ratio between tumor and 
brain is higher in cases from the TCIA dataset, compared 
with cases from the Leuven dataset. Leuven dataset has 
a better signal noise ratio (SNR) than TCIA (Additional 
file 1: Fig S2).

Models training and validation
Two models were trained and validated in a sequen-
tial order with similar methodology (Fig.  1C). Model 
1 reached convergence during the first 5 epochs com-
pared with model 2 which reached convergence around 
15 epochs (Additional file  1: Fig S3). The best and the 
worst performance of model 1 were shown (Fig. 3A–D). 
The performance of model 1 in both datasets was com-
parable as measured by DSC (0.873 vs. 0.854, p > 0.05) 
and RV (0.981 vs. 0.902, p > 0.05). The worst performance 
was observed in a case with a large tumor and significant 
tumor occupying sign (Fig.  3D). Additionally, we also 
observed a higher HD (52.590 vs. 9.957, p < 0.0001) and 
MSD (3.415 vs. 1.543, p < 0.05) values in Leuven data-
set than in TCIA (Fig.  3G, H). In Gaussian noise chal-
lenge, segmentation performance of model 1 remained 
unchanged in the Leuven dataset, when the SNR was 
greater than two (Fig. 3I). However, the performance of 
model 1 in TCIA dataset could be unaffected only if the 
SNR was higher than eight. The model performances on 
two datasets with noise challenge were further confirmed 
by RV, MSD and HD (Additional file 1: Fig S4A–C).

Segmentation of brain tumor from brain images by 
model 2 was successfully achieved in each applied data-
set, with marginally inferior performance in TCIA data-
set as measured by DSC (0.610 vs. 0.695, p > 0.05) and 
RV (0.497 vs. 0.977, p < 0.01) (Fig.  4A–F). Similarly, sig-
nificantly higher HD (29.222 vs. 10.485, p < 0.01) was 



Page 6 of 12Wang et al. Acta Neuropathologica Communications           (2023) 11:11 

observed in Leuven dataset, however, MSD (4.554 vs. 
2.017, p > 0.05) did not differ significantly between two 
datasets. The inferiority was usually observed in cases 
with poorly perfused tumor lesions, larger tumor size and 
significant tumor accompanying signs like ventriculo-
megaly. After adding different levels of noise, the perfor-
mance of model 2 remained uncompromised even when 
the SNR was close to three in Leuven dataset. However, 
model 2 only segmented well when the SNR is higher 
than eight in TCIA dataset (Fig. 4I, Additional file 1: Fig 
S4D–F).

AI‑assisted segmentation
For model 1, AI-assisted segmentation yielded less 
diverse results as measured by DSC (0.875 vs. 0.966, 
p < 0.0001), HD (23.949 vs. 16.559, p < 0.0001), MSD 
(2.668 vs. 1.031, p < 0.0001), and reduced the segmen-
tation time (8.812 vs. 5.750, p < 0.05) for Leuven data-
set (Fig.  5A). Similarly, these could also be observed in 

application of the model 1 in TCIA dataset, as indicated 
by DSC (0.891 vs. 0.964, p < 0.001), HD (4.626 vs. 3.442, 
p < 0.0001), MSD (3.444 vs. 2.313, p < 0.0001) and seg-
mentation time (13.974 vs. 10.221, p < 0.001) (Fig.  5B). 
Similarly, AI-assisted segmentation pipeline of model 
2 helped reduce the inter-observer disparity in Leuven 
dataset, compared with fully manual segmentation, as 
indicated by DSC (0.861 vs. 0.944, p < 0.0001), HD (34.637 
vs. 27.245, p < 0.0001), MSD (4.164 vs. 2.945, p < 0.0001) 
(Fig.  5C). Segmentation time has reduced significantly 
(5.934 vs. 4.887, p < 0.05). The improvement in segmenta-
tion consistence by model 2 was also observed in TCIA 
dataset, as indicated by DSC (0.833 vs. 0.947, p < 0.0001), 
HD (5.576 vs. 4.599, p < 0.0001), MSD (1.886 vs. 1.342, 
p < 0.0001) (Fig.  5D). AI-assisted segmentation is asso-
ciated with shorter segmentation time (8.931vs.14.239, 
p < 0.001).

In model 1, most of correction mainly involved brain-
skull border, misclassification of cranial nerves, and/

Fig. 2  Exemplified images of Leuven and TCIA database. Images of T2WI, T1WI and CE-T1WI from both Leuven dataset (left) and TCIA dataset (right). 
Diversity in these radiological characteristics like ventriculomegaly, tumor, and intratumoral perfusion deficiency are indicated by red, yellow and 
white arrows respectively

(See figure on next page.)
Fig. 3  Segmentation of tumor-bearing brain in both datasets. The best and the worst prediction on Leuven dataset (A, C) and TCIA dataset (B, 
D) were shown. Ground truth and AI predicted segmentation were shown in T2WI MRI images in white and green respectively. Comparison of AI 
model performance between Leuven and TCIA datasets were finished by paired t tests on DSC, RV, HD and MSD (E–H). Performance of AI model 
after addition of different levels of Gaussian noise between Leuven and TCIA dataset were also shown (I). Data here are showed as mean ± standard 
error of mean. Abbreviations: DSC: Dice similarity coefficient; RV: relative ratio; HD: Hausdorff distance; MSD: mean surface distance; SNR: signal–
noise ratio, ns: non-significant, *: < 0.05, ****: < 0.0001
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Fig. 3  (See legend on previous page.)
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Fig. 4  Segmentation of tumor in both datasets. The best prediction on Leuven dataset by T2WI (A) and CE-T1WI (A′) and TCIA dataset by T2WI 
(B) and CE-T1WI (B′). The worst prediction on Leuven dataset by T2WI (C) and CE-T1WI (C′) and TCIA dataset by T2WI (D) and CE-T1WI (D′). Ground 
truth and AI predicted segmentation are plotted in white and green respectively. Comparison of AI model performance between Leuven and TCIA 
datasets were finished by paired t tests on DSC, RV, HD and MSD (E–H). Performance of AI model after addition of different levels of Gaussian noise 
between Leuven and TCIA dataset (I). Data here are showed as mean ± standard error of mean. Abbreviations: DSC: Dice similarity coefficient; RV: 
relative ratio; HD: Hausdorff distance; MSD: mean surface distance; SNR: signal–noise ratio; ns: non-significant, **: < 0.01
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Fig. 5  Quantitative evaluation on AI-assisted segmentation. DSC, RV, HD and MSD of inter-observer disparity based on fully manual segmentation 
and inter-observer disparity based on AI assisted segmentation in Leuven dataset (A) and TCIA dataset (B) for model 1, with model 2 in Leuven 
dataset (C) and TCIA dataset (D). Data here are showed as mean ± standard error of mean. Abbreviations: DSC: Dice similarity coefficient; RV: relative 
ratio; HD: Hausdorff distance; MSD: mean surface distance; ns: non-significant; *: < 0.05; **: < 0.01; ***: < 0.001; ****: < 0.0001
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or labyrinth. Extremely poor performance was mainly 
observed in TCIA cases with larger tumor volume, 
greatly changed brain anatomy, and spread of tumor into 
skull. In model 2, tumor border was the most modified 
area.

Discussion
This study has met its preset aims: training and validation 
of 3D U-Net based models for automatic segmentation 
of tumor bearing brains and brain tumor lesions, based 
on datasets from two research centres. Furthermore, 
the performance of these models has been validated 
in images with low SNR, which ensures its applica-
tion in low quality image data. These models may assist 
quantitative imaging analyses, surgical planning and 3D 
printing by reducing inter-observer disparity and seg-
mentation time.

The generalizability and representability of models 
here are based on the following facts. Firstly, this study 
adopted different tumor models, with implanted tumor 
in rats in Leuven dataset and primary brain tumor in 
genetically modified mice and implanted tumor model in 
mice in TCIA dataset. Secondly, MRI data were acquired 
with commonly used sequences including T2WI, T1WI 
and CE-T1WI at 3.0T magnets. Thirdly, different scan-
ning settings among multi-center data, including scan-
ning parameters and field of view, represent the practical 
scenarios of future applications. Lastly, models’ robust-
ness was tested with Gaussian noise addition.

U-Net is a neural network dedicated for ROI delinea-
tion. The 3D U-Net architecture, an updated version of 
2D U-Net, can interpret the cross-plane spatial informa-
tion based on the same encoder-decoder structure of its 
2D counterpart. Technically, 3D convolution followed 
by 3D max-pooling was adopted in its encoder path, 
with 3D up-sampling together with the spatial informa-
tion during encoding in decoder path. This architecture 
has been tested in various scenarios of medical imaging, 
with robust performance [16, 21]. Additionally, it is note-
worthy that novel variants of U-Net have been proposed, 
which are believed to be methodologically superior, 
including UNeXt, nnU-Net, cascaded U-Net, U-NetCC, 
double U-Net, and recurrent residual U-Net [1, 11, 13–
15, 28]. The architecture may possibly improve the per-
formance reported here, however, these newer variants 
have not been fully tested in application level and the 
retraining with these models is not the aim of current 
study.

Recently, quantitative imaging analyses in preclinical 
animal models have become increasingly important [8]. 
Radiomics can automatically extract image features like 
volume, shape, texture and signal intensity distribution, 
which mostly can reflect underlying tissue heterogeneity 

and pathophysiology. Proper segmentation is crucial 
for these features’ extraction, and slight changes in ROI 
introduced by inter-observer disparities may lead to sig-
nificant changes in radiomics features and subsequent 
radiomics-based prediction [27]. Computer-aided seg-
mentation may reduce the inter-observer disparity and 
thus produce more robust and reproducible radiomic 
features [8]. The models here, together with radiomics 
models developed in the future, will form an automated 
pipeline for molecular classification, prognostic predic-
tion, and so on in preclinical animal study, ultimately 
facilitating clinical development.

Both model 1 and model 2 performed well in Leuven 
dataset, even after extensive Gaussian noise addition. The 
relatively poor prediction of model 1 in TCIA dataset can 
be accountable to the following facts. Firstly, after iso-
tropic resampling the imaging volume for mice is lower 
than that in Leuven dataset. Secondly, the image qual-
ity is poorer than that of Leuven dataset, as indicated 
by initial SNR. Thirdly, anatomical distortion was found 
greater in TCIA cases due to large tumor size which dis-
rupted the image texture. Lastly, most scans did not cover 
entire head region, and cerebellum was not included in 
the scanning region.

The model 2 generally yielded a poorer performance 
than model 1, as indicated by DSC, which can be partially 
attributed to the ambiguous tumor border. The ambigu-
ous border even raised the disparity between human 
radiologists, as indicated by the inter-observer disparity 
in radiologists’ segmentations (Fig.  5). The poorer per-
formance of model 2 in TCIA dataset, compared with 
Leuven dataset, can be explained additionally by the het-
erogenous and poor enhancement behavior in CE-T1WI 
and diffuse tumor borders.

With training model 1, due to the demanding hard-
ware resources of 3D U-Net, the input shape was set as 
64 × 64 × 64 × 3. After isotropic resampling and cen-
tral cropping, the matrix size for Leuven dataset is 
64 × 128 × 128 × 3, compared with 64 × 64 × 64 × 3 in 
the TCIA dataset. Thus, Leuven data were patchified 
into 64 × 64 × 64 × 3 before filling into the model, with 
TCIA data being natively filled. This explains the higher 
maximal false positive rate in validation of model 1 with 
Leuven data than with TCIA data (0.28 vs. 0.14), because 
cross cube interpretation of image texture is disabled 
during patchifying. The “counter-intuitive” significantly 
higher HD and MSD value in validation of Leuven data-
set can be explained by its bigger matrix size. Thus, cau-
tious interpretation of these parameters is suggested 
when comparing model performance in data with differ-
ent matrix size. HD and MSD would be good measures 
when comparing ROIs based on the same dataset as we 
did in Fig. 5.
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Despite encouraging segmentation performance here, 
the following limitations should be addressed. Firstly, 
the most important limitation is a lack of gold standard 
for manual segmentation, especially for tumor lesions 
in TCIA dataset. Secondly, AI-based auto-segmentation 
is a data-driven toolbox, thus, its performance on exter-
nal real life use depends on the variety of data filled dur-
ing training process. Trans-species use may not yield 
expected performance. Thirdly, these models were 
trained based on T1WI, CE-T1WI and T2WI data, thus, 
only cases with complete scan of these sequences are eli-
gible for satisfactory automatic segmentation. Lastly, dur-
ing AI-assisted segmentation, increased time for manual 
correction may be foreseeable for cases with extremely 
distorted anatomy in brain.

Conclusion
We proposed 3D U-Net based models for auto segmen-
tation of tumor-bearing brain and brain tumor lesion 
respectively, based on volumetric MRI data from rats and 
mice. The automated platforms demonstrated satisfac-
tory delineation for brain and tumor respectively based 
on T1WI, CE-T1WI and T2WI images. Models here 
were further challenged with Gaussian noise addition 
and showed robust reproducibility in different settings 
as measured by quantitative measures. The application of 
AI-assisted segmentation can reduce interobserver dis-
parity and thus present a possibility of automatic imaging 
analyses pipeline for translational animal studies. Hope-
fully, these tools may be of help for peers in quantita-
tive imaging analyses, animal surgery planning, and 3D 
printing.
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