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Abstract

Neuropathology and neuroimaging studies have identified several subtypes of Alzheimer's disease (AD): hippocam-
pal sparing AD, typical AD, and limbic predominant AD. An unresolved question is whether hippocampal sparing AD
cases can present with neurofibrillary tangles (NFT) in association cortices while completely sparing the hippocam-
pus. To address that question, we conducted a systematic review and performed original analyses on tau positron
emission tomography (PET) data. We searched EMBASE, PubMed, and Web of Science databases until October 2022.
We also implemented several methods for AD subtyping on tau PET to identify hippocampal sparing AD cases. Our
findings show that seven out of the eight reviewed neuropathologic studies included cases at Braak stages IV or
higher and therefore, could not identify hippocampal sparing cases with NFT completely sparing the hippocampus. In
contrast, tau PET did identify AD participants with tracer retention in the association cortex while completely sparing
the hippocampus. We conclude that tau PET can identify hippocampal sparing AD cases with NFT completely sparing
the hippocampus. Based on the accumulating data, we suggest two possible pathways of tau spread: (1) a canonical
pathway with early involvement of transentorhinal cortex and subsequent involvement of limbic regions and associa-
tion cortices, and (2) a less common pathway that affects association cortices with limbic involvement observed at
end stages of the disease or not at all.

Keywords: Alzheimer’s disease, Subtypes, Heterogeneity, Neuropathology, Neurofibrillary tangle, Positron emission
tomography, Hippocampal sparing, Systematic review

Introduction

The field of biological subtypes of Alzheimer’s disease
(AD) has increasingly gained attention [1], envisioned
to be a strong driver of precision medicine and future

clinical trials [2]. Neuropathology and neuroimag-
ing studies have consistently identified three subtypes
based on the distribution of neurofibrillary tangle (NFT)
pathology and patterns of brain atrophy [1, 3-7]: hip-
pocampal sparing, limbic predominant, and typical AD
(Fig. 1a). A fourth subtype known as minimal atrophy AD

*Correspondence: daniel ferreira.padilla@ki.se; eric westman@ki.se

! Division of Clinical Geriatrics; Center for Alzheimer Research; Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet,
Blickagédngen 16 (NEO building, floor 7th), 14152 Huddinge, Stockholm,
Sweden

Full list of author information is available at the end of the article

B BMC

has also been identified in structural imaging studies [1,
3], and we recently described the minimal tau AD sub-
type on tau PET [8].

An important and still unresolved question is whether
the hippocampal sparing subtype follows a different
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Fig. 1 Schematic representation of AD subtypes and Braak’s NFT staging. a The panel shows the predominant location of tau neurofibrillary tangles
(NFT) in hippocampus and association cortex, across subtypes, as described in Murray et al. [7]. In the figure, location of tau NFT is represented as
green ellipsoids and blue circles. In green, hippocampus (HIP). In blue, association cortex, including medial frontal gyrus (MFG), superior temporal
gyrus (STG), and inferior parietal gyrus (IPG). b Spreading of tau NFT as postulated by Braak and Braak [10], including stages from | to VI, over time.

In green, hippocampus; in blue, association cortex; in pink, transentorhinal cortex (and Cornu Amonis 1 region of the hippocampus in Stage Il).

neuropathologic pathway than limbic predominant and
typical AD subtypes. The hippocampal sparing subtype
of AD is plausible in magnetic resonance imaging (MRI)
studies because atrophy can occur in the association cor-
tex while completely sparing the hippocampus (i.e., no
atrophy in the hippocampus) [1, 3, 9]. However, the same
pattern is questionable in neuropathology studies as NFT
accumulating in the association cortices while completely
sparing the hippocampus (i.e., no NFT in the hippocam-
pus) would challenge the widely used model of neurofi-
brillary changes (NFT and neuropil threads) defined by
Braak and Braak [10]. In that model, NFT in the hip-
pocampus precede NFT accumulation in the association
cortex. More specifically, Braak and Braak postulated that
NFT accumulation typically starts in the transentorhi-
nal cortex (Braak stage I), although a few isolated NFT
may additionally occur in the entorhinal cortex, Cornu
Ammonis 1 (CA1) region of the hippocampus, basal fore-
brain, and antero-dorsal nucleus of the thalamus [10].
Stage II includes modest numbers of NFT in the hip-
pocampus (CA1). Stage III involves the entorhinal cortex,
subiculum, other regions of the hippocampus (CA2-4),
and the amygdala. Stage IV involves several subcortical
gray matter structures such as the putamen and nucleus
accumbens. Finally, although some NFT can reach the
isocortex during stage III and IV, the association cortex is
severely involved in stage V, and the primary sensory cor-
tex in stage VI. These stages are summarized as transen-
torhinal (I-II), limbic (III-IV), and isocortical (V-VI)
stages in Braak and Braak’s model (Fig. 1b). Hence, a

strict definition of hippocampal sparing AD would imply
that NFT reached the isocortex without involving the
hippocampus.

The first report on hippocampal sparing AD was pub-
lished in 2011 [7], including 889 cases with a neuro-
pathologic diagnosis of AD. All the cases were at Braak
stage [10] > IV, implying that they all had NFT both in the
hippocampus and association cortex (as defined by the
middle frontal, superior temporal, and inferior parietal
cortices, Fig. 1a, b). In that study, hippocampal sparing
AD was defined as cases with higher NFT counts in the
association cortex compared to group average and lower
hippocampal NFT counts compared to group average,
with the ratio of hippocampal:cortical NFT counts being
less than the 25th percentile to ensure classification of
extreme phenotype [7] (a method later on referred to as
the “Murray’s algorithm”). In the 2011 publication, hip-
pocampal sparing relative to greater cortical involvement
defines the phenotype [7].

Given the emphasis on “relative sparing’, the goal of
our current study was to investigate whether AD patients
can have NFT in the association cortex while completely
sparing the hippocampus, and to assess three possible
neuropathologic pathways based on initiation and end
sites of tau pathology (Fig. 2a): (i) NFT accumulation fol-
lows the stereotypical order defined by Braak and Braak
[10], where NFT in the hippocampus always precede
NFT in the association cortex. Hence, hippocampal spar-
ing AD would only emerge at Braak stage V and VI and
merely reflects cases with NFT counts predominantly in
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the association cortex (we will call this the “cortical pre-
dominance” hypothesis, Fig. 2b); (ii) NFT accumulation
in the association cortex precedes NFT accumulation in
the hippocampus, thus occurring any time before Braak
stage II, but all subtypes converge at Braak stage V/VI (we
will call this the “cortical precedence” hypothesis, Fig. 2c);
and (iii) NFT accumulates in the association cortex while
completely sparing the hippocampus across the entire
disease progression up to death (we will call this the
“distinct cortical” hypothesis, Fig. 2d). Only the “distinct
cortical” hypothesis would fit with the strict definition of
hippocampal sparing AD, which implies NFT completely
sparing the hippocampus. In contrast, the “cortical pre-
dominance” and “cortical precedence” hypotheses imply
the presence of NFT in the hippocampus. To address
the goal of our study, we conducted a systematic review
of the literature and further provide original data to gain
novel insight.

Materials and methods
Systematic review
We capitalized on our previous systematic review [1],
conducted on EMBASE, PubMed, and Web of Science
databases as per the PRISMA statement, and performed
an update of new publications up to October 2022. The
search strategy combined the following medical subject
heading (MeSH) and free-text terms (Additional file 1:
Table S1): “Alzheimer’, “AD’, “subtype’, “heterogeneity’,
“atrophy’, “patterns’, “subtypes’, “MRI’;, “Magnetic Reso-
nance’, “PET’, “postmortem’, “neurofibrillary tangle’, and
“neuropathological” Additional relevant publications
were identified by scrutinizing references of the included
papers.

Selection criteria for the current systematic review
were: (i) case—control studies reporting data on NFT
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count or tau PET uptake in such a way that interpreta-
tions could be drawn with regards to potential hippocam-
pal sparing AD cases (i.e., presence of NFT or abnormal
tau PET values in the association cortex in conjunction
with absence of NFT or normal tau PET values in hip-
pocampus/entorhinal cortex); (ii) studies including par-
ticipants in the AD continuum; (iii) articles published in
English.

Study selection was performed by a single researcher
(D.E), involving a second researcher (E.W.) when needed.
Several strategies were followed to reduce risks bias
related to publication, data availability, and reviewer
selection (Additional file 1: Table S2). Data extraction
was performed by a single researcher (D.F.) including the
fields listed in Additional file 1: Table S3. A studies’ meth-
odological quality was assessed with the CASP checklist
for case control studies.

Original data

In addition to our systematic review, we re-analyzed the
data published in three previous studies (Whitwell et al.
[11], Charil et al. [6], and Young et al. [12]. We also pro-
duced brand new data using the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort (please see below
for a description of the ADNI cohort) [13]. This re-analy-
sis was based on tau PET data. Due to the nature and idi-
osyncrasy of tau PET data, the ability to identify potential
hippocampal sparing AD cases may be partially influ-
enced by the cut points used to define abnormality in
tau PET uptake. Hence, for this re-analysis, based on the
figures provided in Whitwell et al. [11], Charil et al. [6],
and Young et al. [12], we applied five complementary cut
points for tau PET data in order to interpret abnormal-
ity using the tau PET tracer flortaucipir (18F-AV-1451),
and re-classified participants into hippocampal sparing

(See figure on next page.)

NFT = neurofibrillary tangles

Fig. 2 Three hypotheses of hippocampal sparing AD based on different initiation and end sites of tau pathology. Based on initiation and end sites
of tau pathology (a), we hypothesized three possible scenarios: (b) NFT accumulation follows the stereotypical order defined by Braak and Braak
[10], where NFT in the hippocampus always precede NFT in the association cortex. Hence, hippocampal sparing AD would only exist in Braak
stage V and VI and reflects individuals with NFT predominantly in the association cortex. The colors represent mild (yellow), moderate (orange),
and severe (red) degrees of tau pathology. Colors in panel b are just hypothetical examples to represent that in the hippocampal sparing subtype,
tau pathology would reach a higher degree of pathology in the cortex (e.g. in red, severe degree), than in the hippocampus (e.g. in yellow, mild
degree). However, other degrees of pathology are possible. For example, typical AD is defined by balanced degrees of pathology in cortex and
hippocampus, so that the degrees of pathology can indeed be mild, moderate, or severe, while in our Fig. 2b we depicted them in orange for
illustration purposes); (c) NFT accumulation in the association cortex precedes NFT accumulation in the hippocampus, occurring before Braak
stage Il, but all subtypes converge at Braak stage V/VI. Again, colors in panel c are just hypothetical examples and other degrees of pathology are
also possible; and (d) NFT accumulates in the association cortex while completely sparing the hippocampus across the entire disease progression
up to death. As for the other two hypotheses, colors in panel d are just hypothetical examples and other degrees of pathology are also possible.
Only the “distinct cortical” hypothesis would support the existence of a strictly hippocampal sparing subtype of AD, since the “cortical predominance”
and “cortical precedence” hypotheses imply the presence of tau NFT in the hippocampus. Panels b, ¢, and d show examples of the hippocampal
sparing AD subtype, and the depicted colors are just examples, but other degrees of pathology are also possible as long as the level of pathology
in cortex is higher than that in hippocampus (which defines this subtype). The figure has a focus on hippocampal sparing AD, and it does not
provide examples for other subtypes such as limbic predominant AD or minimal tau AD, in all the panels. Abbreviations: AD = Alzheimer’s disease;
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Fig. 2 (See legend on previous page.)
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Table 1 Cut points for the determination of abnormal levels of flortaucipir uptake
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Reference

Referred to as in our current  Criterion

study

Region/s

Cut point

Data source

Jack et al. [14, 16]

Byun etal. [15]

Jacketal. [16]

Scholl et al. [18]

Maass et al. [19]

Accuracy-based cut point’

‘15D cut point’

'10% cut point’

‘Schéll cut point’

‘Maass cut point’

Accuracy based on age-
matched clinically normal
versus amyloid-positive cog-
nitively impaired individuals
from the MCSA

Flortaucipir uptake + 1SD from
amyloid-negative cognitively
unimpaired individuals from
ADNI

Sensitivity (10th percentile
flortaucipir uptake) based on
amyloid-positive cognitively
impaired study participants
from ADNI

Conditional inference tree
analysis to classify individuals
into Braak stage I/1l
Conditional inference tree

analysis to classify individuals
into Braak stage I/I1

Meta-ROl including entorhinal, >1.33 MCSA

amygdala, parahippocampal,

fusiform, inferior temporal, and

middle temporal ROIs

Hippocampus >279 ADNI

Entorhinal cortex >3.73

Hippocampus >275 ADNI

Entorhinal cortex >3.83

Transentorhinal, hippocam- > 140 BACS and UCSF-MAC
pus, and entorhinal cortex

Transentorhinal, hippocampus, >1.13 BACS and UCSF-MAC

and entorhinal cortex

The methods for determination of abnormal levels of flortaucipir uptake are different (criterion column), and there is also additional methodological variation across
the original studies. Partial volume correction was applied in our analysis of ADNI data and all the original studies except for the ‘accuracy-based cut point’, although
borderline voxels were discarded by the authors.'*'® The meta-ROl implemented in the ‘accuracy-based cut point’ includes amygdala, entorhinal cortex, fusiform,
parahippocampal, and inferior temporal and middle temporal gyri. Hence, the meta-ROI does not include any of the regions used for subtyping in Murray et al. [7] i.e.
superior temporal, middle frontal, and inferior parietal gyri. MCSA Mayo Clinic Study of Aging, BACS Berkeley Aging Cohort Study, UCSF-MAC University of California

San Francisco—Memory and Aging Center, ADNI Alzheimer’s Disease Neuroimaging Initiative, RO/ region of interest, SD standard deviation, pc percentile

AD. The cut points are fully explained in Table 1. Briefly,
the accuracy-based cut point’ is increasingly used in the
field but is conservative and is based on a meta-region
of interest (ROI) that includes the entorhinal cortex and
several other cortical areas (see Table 1 for a description
of the meta-ROI) [14]. Hence, we also tested previously
published less conservative cut points that are specific to
hippocampus and entorhinal regions that we calculated
using the publicly available ADNI data. These cut points
are based on the+ 1 standard deviation (SD) [15] of flo-
rtaucipir uptake in amyloid-negative cognitively unim-
paired individuals; and the sensitivity (10th percentile
from amyloid-positive cognitively impaired individuals)
method [16]. We will refer to these cut points as ‘+ 1SD
cut point’ and ‘10% cut point. An advantage of less con-
servative cut points is that they might be more capable
of capturing early cortical tau deposition [17]. Finally, we
complemented our analyses by using two other popular
cut points that are based on a data-driven method for
staging individuals into transentorhinal, limbic, and iso-
cortical Braak stages, as introduced by Scholl et al. [18]
and Maass et al. [19](referred to as ‘Scholl cut point’ and
‘Maass cut point’).

ADNI (http://adniloni.usc.edu/) data retrieval, as
well as tau PET collection and processing were previ-
ously described in detail in Mohanty et al. [8]. The goal
of the ADNI (launched in 2003, PI: Michael W. Weiner)

[13] is to measure the progression of prodromal AD
and early AD using MRI, PET, and cerebrospinal fluid
biomarkers, as well as clinical and neuropsychologi-
cal assessments. Briefly, we selected participants from
ADNI-2 and ADNI-3 who had a tau PET scan, includ-
ing 84 participants (54 amyloid-beta positive prodromal
AD participants, 30 amyloid-beta positive AD dementia
participants) and 200 amyloid-beta negative cognitively
unimpaired healthy controls. Amyloid status was deter-
mined through amyloid PET (florbetapir cut-off=1.11 or
florbetaben cut-off=1.08) [8]. The ADNI study was per-
formed in accordance with the ethical standards by the
Declaration of Helsinki, and ethics committees at each
participating center reviewed and approved data collec-
tion and study procedures. All participants / their legal
guardians gave their informed consent prior to their
inclusion in the ADNI study.

To answer the question of ‘can AD cases have NFT in
the association cortex while completely sparing the hip-
pocampus (or entorhinal cortex)”, we applied the fol-
lowing subtyping algorithms on the tau PET data from
ADNI: Risacher et al. [20], Byun et al. [15], and Charil
et al. [6]. These subtyping methods are thoroughly
explained in the cited publications, and they were imple-
mented as detailed in Mohanty et al. [8], so as to replicate
the original method as closely as possible.
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The accurate quantification of flortaucipir signal in
the hippocampus is challenging, mostly due to off-target
signal in choroid plexus [21]. Still, hippocampus is a key
region for subtyping in many studies [6, 15, 20], as it is for
Braak staging [10]. Hence, we approached this problem
by applying partial volume correction in our analysis of
ADNI data. The same was done in all the original studies
we reviewed and re-analyzed, as well as for the genera-
tion of all cut points used (except for the ‘accuracy-based
cut point, where an alternative procedure was carried
out). In addition, we applied subtyping using the entorhi-
nal cortex instead of the hippocampus, as a control analy-
sis. Entorhinal cortex was previously used for subtyping
in tau PET studies [11, 22], thus providing a method
for comparability with our current study. We used The-
HiveDB for data management and processing [23].

Statistical analyses
We report the number of cases that were classified as
hippocampal sparing AD in the original studies and cal-
culated respective percentages out of their total sam-
ples. Additionally, we used the ADNI cohort to calculate
the “+ ISD cut point’ and ‘10% cut point’ for tau PET, as
described in Table 1. The critical values for the accuracy-
based cut point’, ‘Schéll cut point’, and ‘Maass cut point’
were directly taken from the original publications [16, 18,
19] (see Table 1). Using these five alternative cut points,
we examined the data presented in Whitwell et al. [11],
Charil et al. [6], and Young et al. [12] in order to identify
hippocampal sparing AD cases that had normal tau PET
uptake values in the hippocampus or entorhinal cortex.
The ability to identify potential hippocampal sparing
AD cases also depends on the subtyping algorithm used
[8]. Hence, we additionally classified amyloid-positive
prodromal AD and AD dementia participants from the
ADNI cohort using three different subtyping algorithms
[6, 15, 20] on the tau PET data, and used the five alterna-
tive cut points to identify hippocampal sparing AD par-
ticipants who had normal tau PET uptake values in the
hippocampus or entorhinal cortex. In all these analyses,
we report the percentage and number of participants as
the outcomes of interest.

Results

Systematic review

Our search identified 12 804 records. After removing
duplicates and screening by title, abstracts, and full text,
48 records were selected (Fig. 3, blue boxes). Of those,
we excluded 30 records because of the reasons listed in
Additional file 1: Table S4. This gave a total of 18 studies
for our qualitative synthesis and original analysis (Fig. 3,
orange ellipsoid). Table 2 shows the key characteristics of
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these studies. All the selected studies had an appropriate
methodological quality according to the CASP checklist.

Below we include a narrative description of studies
providing data on our main question: “Can AD cases
have NFT in the association cortex while completely spar-
ing the hippocampus (or the entorhinal cortex)?”.

In Murray et al. [7], 11% (97/889) of the cases belonged
to the hippocampal sparing AD subtype. All hippocampal
sparing AD cases were at Braak stages >V, implying hip-
pocampal involvement. Hence, none of the AD cases that
had NFT in the association cortex had the hippocampus
completely spared of NFT. A recent study included these
cases in a larger and updated cohort of 1 361 AD cases
at Braak stages>IV [4]. The reported frequency of hip-
pocampal sparing AD cases was 13% (175/1361). Due to
the partial overlap between these two cohorts, we will
consider the seminal and key study of Murray et al. [7] for
our analysis in Table 3.

Whitwell et al. [9] applied Murray’s algorithm on an
independent sample of 177 cases with a neuropathologic
diagnosis of AD, all of whom at Braak stages>IV. The
percentage of hippocampal sparing AD was 11% (19/177).
As in Murray et al. [7], all hippocampal sparing AD cases
were at Braak stages >IV, implying hippocampal involve-
ment. Hence, none of these cases had the hippocampus
completely spared of NFT. Strikingly, the neuropatho-
logically-defined hippocampal sparing AD cases showed
complete sparing of the hippocampus in terms of atro-
phy as assessed by MRI data (at the group level). This
demonstrates that AD cases with a lower proportion of
NFT counts in the hippocampus than in the association
cortex do not show any evidence of reduced hippocam-
pal volume (or entorhinal thinning) on MRI when com-
pared to healthy controls. A recent study used the same
cohort but only focused on cases with non-amnestic AD
presentations at Braak stages IV to VI (N=36) [24]. The
reported frequency of hippocampal sparing AD cases
was 31% (11/36), showing the higher frequency of this
subtype in atypical AD. Due to the overlap between these
two cohorts, we will consider the much larger study of
Whitwell et al. [9] for our analysis in Table 3.

Petersen et al. [25] also applied Murray’s subtyping
algorithm on 74 cases with a neuropathologic diagnosis
of AD, all of them at Braak stages >IV. The group average
for subtype classification was derived from the 74 pure
AD cases who lacked co-existing pathology, which may
affect thresholds. Clinically, the cases spanned from typi-
cal AD to various atypical/non-amnestic syndromes. The
percentage of hippocampal sparing AD was 7% (5/74).
None of the cases who had NFT in the association cortex
had the hippocampus completely spared of NFT.

Uretsky et al. [26] used an approximation of the
Murray’s subtyping algorithm on 292 cases with a
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Y= in October 2022 (n = 4) in October 2022 (n = 1457)* an electronic database search through an alternative
"E in July 2019 (n = 11307) search in July 2019 (n = 36)
[J] Dupli (n=7246) I !
o J
Articles identified after
removing duplicates (n = 4061)
[oY0) Records excluded Records excluded
< by title (n = 1189) by title (n = 3191)
c Articles selected by title Articles selected by title
b (n=272) (n=870)
b Records excluded by Records excluded by
w Conference abstracts (n = 166)

Other populations (HC, n = 15;
SCD, n=1; MCl, n =77; HC and
MCI, n = 3)

Other reasons (Not appropriate
for the meta-analysis, n = 6)

Not found (n = 6)

Articles selected by
abstract (n = 511)

Articles selected by whole
manuscript (n = 237)

[ Biological subtyping (n = 64) ]

[ Non-Biological subtyping (n = 126) ] Reviews (n =32)
Other (n = 15)

Included Eligibility
4

Post-mortem (n = 8)

G

In-vivo, tau PET|| In-vivo, other

Post-mortem
(n=28) (n=4)

PET tracers or
MRI measures
(Amyloid, n = 3;

Clinical Cognitive
syndromes || subtypes
(n = 68) (n=23)

MRI + FDG, n =
3;

Fig. 3 Study selection flowchart. By updating our search from July 2019 (right panel, n = 11,343 hits) through a new search in October 2022 (left
panel, n=1461), we identified 12,804 records. After removing duplicates and screening by title, abstracts, and full text, 48 records were selected
(blue boxes). Of those, we further excluded 30 records because of the reasons listed in Additional file 1: Table S4. This gave a total of 18 studies for
our qualitative synthesis and original analysis (orange ellipsoid). *The search in October 2022 used the same medical subject heading (MeSH) and
free-text terms than in July 2019, but duplicates were removed automatically during the actual search strategy. PET positron emission tomography;
FDG fluorodeoxyglucose; MRI magnetic resonance imaging; HC healthy control; SCD subjective cognitive decline, MCI mild cognitive impairment

neuropathologic diagnosis of AD, all of them at Braak
stages >1V, but with clinical diagnoses including AD
dementia, prodromal AD, preclinical AD, mixed AD
dementia, and non-AD dementias. The percentage of
hippocampal sparing AD was 8% (22/292). None of the
cases who had NFT in the association cortex had the
hippocampus completely spared of NFT.

Smirnov et al. [27] also used an approximation of
Murray’s subtyping algorithm on 121 cases with a
neuropathologic diagnosis of AD, all of them at Braak
stages >1V, but with clinical diagnoses including AD
dementia, prodromal AD, and non-AD dementias.
The percentage of hippocampal sparing AD was 19%
(23/121). None of the cases who had NFT in the asso-
ciation cortex had the hippocampus completely spared
of NFT.

In Corder et al. [28], all cases with NFT counts in the
association cortex also had NFT counts in CAl and
subiculum. Hence, as per the reported data, none of
the AD cases who had NFT in the association cortex
had the hippocampus completely spared of NFT. This

analysis was based on 249 cases. A total of 159 cases
had a neuropathologic diagnosis of AD, and Braak
stages ranged from I to VI in the whole cohort.

These eight neuropathologic studies support the “corti-
cal predominance” and “cortical precedence” hypotheses
(Fig. 2b, c). However, except for Corder et al. [28], these
studies could not really test for the “distinct cortical”
hypothesis (Fig. 2d), because they all included cases at
Braak stage IV [24] or>1V [4,7, 9, 25-27].

Schwarz et al. [29] used the tau PET tracer flortaucipir
to assess NFT in vivo. In their study, 5% (4/75) of the
amyloid-positive prodromal AD or AD dementia par-
ticipants revealed flortaucipir uptake in the association
cortex while completely sparing the hippocampus (nor-
mal flortaucipir uptake in the hippocampus). However,
among the cortical regions they tested, these four par-
ticipants showed abnormal flortaucipir uptake in the
transentorhinal cortex.

In a later publication, Schwarz et al. [30] used the tau
PET tracer flortaucipir in the ADNI cohort, including
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46 cognitively unimpaired participants [19 amyloid-pos-
itive], 42 mild cognitive impairment (MCI) participants
[24 amyloid-positive], and 10 AD dementia participants
[9 amyloid-positive]. The authors tested three classifi-
cation schemes for tau staging. The first scheme, which
was designed to mimic Braak staging as closely as pos-
sible, showed that 14% (14/98) of the participants had
an abnormal flortaucipir uptake in the association cor-
tex while completely sparing the hippocampus. Three
of these participants showed an abnormal flortaucipir
uptake in the transentorhinal cortex. The second scheme,
which was a simplified version of the first scheme using
fewer and larger ROIs, showed that 7% (7/98) of the
participants had an abnormal flortaucipir uptake in the
association cortex while completely sparing the medial
temporal lobe. The third scheme, which was even simpler
than the first two schemes and used lobar ROIs, showed
that only 1% (1/98) of the participants had an abnormal
flortaucipir uptake in non-temporal lobes while com-
pletely sparing the temporal lobe. However, we cannot
exclude that some of these cases are amyloid-negative
since the data was not reported stratified by amyloid
status.

Whitwell et al. [11] performed a clustering analysis on
flortaucipir uptake in the entorhinal cortex and a ROI
including 17 neocortical regions, on 62 amyloid-positive
AD dementia participants. The authors reported that
34% (21/62) of their participants were classified as low
entorhinal and high cortical flortaucipir uptake, consist-
ent with our definition of hippocampal sparing AD.

Charil et al. [6] applied Murray’s subtyping algorithm
on tau PET data using the flortaucipir tracer. All par-
ticipants were amyloid-beta positive: 23 were at the pro-
dromal AD stage and 22 were at the AD dementia stage.
The authors reported that 13% (6/45) of the participants
were classified as hippocampal sparing AD. However, as
in Murray et al. [7], all hippocampal sparing AD cases
were at Braak stages >IV based on tau PET, implying hip-
pocampal involvement. Hence, none of these cases had
the hippocampus completely spared of NFT.

Young et al. [12] used an approximation of Murray’s
subtyping algorithm on tau PET data using the flor-
taucipir tracer. All participants were amyloid-beta posi-
tive and cognitively unimpaired. The authors reported
that 9% (36/392) of the participants had a divergent corti-
cal tau pattern, roughly consistent with the hippocampal
sparing AD subtype.

Toledo et al. [31] used a data-driven method on the tau
PET tracer flortaucipir. All participants were amyloid-
beta positive, including individuals at the AD dementia
stage, prodromal AD, and cognitively unimpaired. Their
data-driven method identified clusters within a gradient
of increasing tau PET uptake (cluster 1: n=181; cluster
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2: n=75; cluster 3: n=16; cluster 4: n=10). The largest
cluster, cluster 1, was subclustered in a sensitivity analy-
sis, demonstrating the existence of a subtype consistent
with hippocampal sparing AD. However, the frequency
of this subtype was not reported.

Palleis et al. [32] used a different tau PET tracer, 18F-
PI-2620. The authors included 45 patients with a Cor-
ticobasal Syndrome, of whom 10 had underlying AD
pathology based on biomarkers. Visual inspection of the
data reported by the authors reveals that 60% (6/10) of
the participants had tau PET positivity in cortical areas in
conjunction with tau PET negativity in mesial temporal
lobe, which is consistent with hippocampal sparing AD.

Rullmann et al. [33] also used the tau PET tracer 18F-
PI-2620. The authors assessed 38 participants with AD
dementia who were amyloid-beta positive. The authors
reported that 18% (7/38) of the participants were clas-
sified with the hippocampal sparing AD subtype. The
authors used the same method than in Schwarz et al.
[29], so that these participants revealed 18F-PI-2620
uptake in the association cortex while completely sparing
the hippocampus (normal 18F-PI-2620 uptake in the hip-
pocampus). However, the authors did not report whether
18F-PI-2620 uptake also spared the transentorhinal
cortex.

Krishnadas et al. [34] used a third different tau PET
tracer, 18F-MK-6240. All participants were amyloid-beta
positive: 67 were at the prodromal AD stage and 84 were
at the AD dementia stage. The authors reported that
18% (27/151) of the participants were classified as hip-
pocampal sparing AD, although the authors stated that
18F-MK-6240 tracer uptake was no or minimal on visual
inspection.

Hence, the results from these tau PET studies serve as
a preliminary support to the “distinct cortical” hypothesis
(Fig. 2d). To further test the “distinct cortical” hypothesis,
we re-analyzed the data available from Whitwell et al.
[11], Charil et al. [6], and Young et al. [12], and investi-
gated the ADNI cohort so as to identify hippocampal
sparing AD participants who had normal tau PET uptake
values in the hippocampus or entorhinal cortex (see next
section).

Original data
Table 3 shows our re-analysis of the data reported in
Whitwell et al. [11], Charil et al. [6], and Young et al. [12].
In Whitwell et al. 11, we observed that two out of their
21 hippocampal sparing AD participants had a pattern of
flortaucipir uptake completely sparing the entorhinal cor-
tex, according to the accuracy-based cut point’ (3%, 2/62,
of the whole cohort). The ‘+ 18D cut point’ and ‘10% cut
point’ revealed that all their 21 hippocampal sparing AD
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participants had a pattern of flortaucipir uptake com-
pletely sparing the entorhinal cortex (34%, 21/62, of
the whole cohort). The percentages for the ‘Scholl cut
point’ and ‘Maass cut point’ are 5% and 2%, respectively
(Table 3).

In Charil et al. [6], we observed that four out of their
six hippocampal sparing AD participants had a pattern
of flortaucipir uptake completely sparing the hippocam-
pus, according to the accuracy-based cut point’ (9%, 4/45,
of the whole cohort). The ‘+ 1SD cut point’ and ‘10% cut
point’ revealed that all their hippocampal sparing AD
participants had a pattern of flortaucipir uptake com-
pletely sparing the hippocampus (13%, 6/45, of the whole
cohort). The percentages for the ‘Schéll cut point’ and
‘Maass cut point’ are 11% and 2%, respectively (Table 3).

In Young et al. 12, we observed that 23 out of their 36
hippocampal sparing AD participants had a pattern of
flortaucipir uptake completely sparing the medial tem-
poral lobes, according to the accuracy-based cut point’
(6%, 23/392, of the whole cohort). The ‘+ I1SD cut point’
and ‘10% cut point’ revealed that all their 36 hippocam-
pal sparing AD participants had a pattern of flortaucipir
uptake completely sparing the medial temporal lobes
(9%, 36/392, of the whole cohort). The percentages for
the ‘Scholl cut point’ and ‘Maass cut point’ are 7% and 1%,
respectively (Table 3).

Finally, we produced new data using the ADNI cohort.
In our recent study by Mohanty et al. [8], we applied
three subtyping algorithms on tau PET data (flor-
taucipir) from the ADNI cohort. The algorithm based
on Byun et al. [15] revealed that 21% (18/84) of the
amyloid-positive prodromal AD or AD dementia par-
ticipants belonged to the hippocampal sparing AD sub-
type. According to this algorithm originally based on the
‘+ 18D cut point’, all 18 hippocampal sparing AD par-
ticipants had a pattern of flortaucipir uptake completely
sparing the hippocampus. The percentages for the alter-
native cut points are shown in Table 3 and range from 0
to 21%. When we replicated Charil et al. [6] and Risacher
et al. [20] algorithms in the ADNI cohort, we found that
10% (8/84) and 11% (9/84) of the amyloid-positive pro-
dromal AD or AD dementia participants belonged to the
hippocampal sparing AD subtype, respectively. However,
the algorithms by Charil et al. [6] and Risacher et al. [20]
do not completely exclude that hippocampal sparing AD
participants can have abnormal flortaucipir uptake values
in the hippocampus. The reason for that is that these two
algorithms define hippocampal sparing AD as the 25%
of cases with highest flortaucipir uptake in the associa-
tion cortex as compared with flortaucipir uptake in the
hippocampus. Hence, using Charil et al. [6] and Risacher
et al. [20] algorithms, we determined abnormal levels
of flortaucipir uptake using the cut points described in
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Table 1. We found that no participant (0%, 0/84) had a
pattern of flortaucipir uptake completely sparing the hip-
pocampus when applying the accuracy-based cut point’.
When applying the ‘+ 18D cut point’ and 10% cut point’,
6% (5/84) and 7% (6/84) of the participants had a pattern
of flortaucipir uptake completely sparing the hippocam-
pus in Charil et al. [6] and Risacher et al. [20] algorithms,
respectively. Percentages for the ‘Scholl cut point’ and
‘Maass cut point’ were 0% (Table 3). All the results in
this paragraph come from subtyping based on the asso-
ciation cortex and the hippocampus. As a control, we did
the subtyping based on the association cortex and the
entorhinal cortex and we observed very similar results
(Additional file 1: Table S5).

In summary, independently of the subtyping algorithm
and cohort, several cut points consistently identified par-
ticipants who had NFT in the association cortex while
the hippocampus (or the entorhinal cortex) was com-
pletely spared of NFT, as revealed by tau PET. However,
the more conservative cut points (Accuracy-based cut
point’, ‘Scholl cut point’, and ‘Maass cut point’) found a
lower proportion or failed to find hippocampal sparing
AD participants in some analyses.

Discussion
In this study we addressed the question of whether neu-
ropathology and in-vivo tau PET can identify AD cases
with NFT in the association cortex while completely
sparing the hippocampus (or entorhinal cortex). Our
findings suggest that those cases can be identified ante-
mortem, but the ability to detect them depends on how
the hippocampal sparing AD subtype is defined and
what data modality and cut points are used to assess tau
pathology. This finding reflects the importance of reach-
ing a consensus in the field with regard to how to opera-
tionalize biological subtypes of AD in future studies [35].
Several in-vivo studies provide supportive evidence of
tau accumulating in the association cortex while com-
pletely sparing the hippocampus [8, 11, 22, 29, 36]. How-
ever, these cases are extremely rare in AD and, so far, they
have only been detected by tau PET imaging. In the eight
neuropathologic studies reviewed in the current study
[4, 7, 9, 24-28], we did not find any individual case with
NET in the association cortex while completely sparing
the hippocampus. However, six of those studies included
cases at Braak stages>IV, and one study at Braak stages
from >III, implying hippocampal involvement as limbic
regions are considered to be affected by Braak III [10].
Of particular note, the successful identification and crea-
tion of the neuropathologic algorithm that first opera-
tionally defined hippocampal sparing AD required the
use of NFT counts derived from review of thioflavin-S
fluorescent staining [7, 25]. Phospho-tau markers (e.g.
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AT8) readily recognize early aspects of tangle maturity
and may reveal tau pathology that does not entirely cor-
respond to neuronal death [37]. Apart from the design of
those studies, it is possible that neuropathologic studies
have a lower potential to identify AD cases with NFT in
the association cortex while completely sparing the hip-
pocampus. One reason for this is that neuropathologic
studies tend to include older individuals at advanced
stages of the disease. Braak and Del Tredici [38] showed
that in their cohort of 2366 non-selected autopsy cases,
virtually all cases had NFT in hippocampus at age 80
and above. The frequency of NFT in hippocampus was
between 30 and 85% in the age range from 30 to 79 years.
Hence, the chance of finding hippocampal sparing cases
is very low and, if any, that chance would be higher when
assessments are done in individuals below the age of 60
[38]. Indeed, many of the hippocampal sparing AD cases
in Murray et al. [7] had their disease onset before the age
of 60.

In contrast, the possibility of PET imaging to assess
tau deposition in vivo at younger ages and earlier disease
stages is expected to increase the potential to identify
hippocampal sparing AD cases. This is what our current
study also suggest. Our tau PET analyses show that when
pooling all the data together, 372/5 583 cases (8%, see leg-
end of Table 3 for further details) had tau PET uptake in
the association cortex while completely sparing the hip-
pocampus [6, 8, 11, 12, 29-34]. The important question
is whether these cases will fit in the “cortical precedence”
hypothesis, that is, they start with NFT in the association
cortex but will accumulate NFT in hippocampus as the
disease progresses; or rather, these cases fit in the ‘dis-
tinct cortical” hypothesis, that is, they start with NFT in
the association cortex and will not accumulate NFT in
hippocampus during the entire progression of the dis-
ease. Unfortunately, there is no data at present that can
resolve this question because the participants should
have been scanned with tau PET from negative tau stage
to earliest tau positive stages, up to death. As for neuro-
pathologic studies, we urgently need subtyping studies on
datasets including participants ranging from Braak stage
0to VL

The main concern in tau PET studies is that the abil-
ity to detect hippocampal sparing AD may depend on the
cut points used, provided that any kind of technical issue
was successfully excluded (e.g., low tau PET uptake due
to technical issues, variation related to partial volume
corrections, etc.). Indeed, this problem is not exclusive of
tau PET studies but is a generalized problem in Medicine
and Science when trying to determine abnormality in any
measure, modality, or population [39, 40]. To circumvent
this, we applied five alternative cut points. We included
the increasingly used accuracy-based cut point’ of 1.33
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for flortaucipir [14]. However, lenient and conservative
versions of this cut-point exist [16], which will influence
individuals’ belonging to different subtypes [8]. Further,
the 1.33 cut-point was established for a meta-ROI region,
while a cut point for flortaucipir uptake in the hip-
pocampus or entorhinal cortex has not been completely
agreed upon yet. We thus computed two other common
cut points using the publicly available ADNI data [13],
including the ‘+1SD cut point’ [15] and the ‘10% cut
point’ [16]; and we added two more cut points that are
popular in the field (i.e., ‘Scholl cut point’, and ‘Maass cut
point’) [18, 19].

We found that independent of the subtyping algorithm
and cohort used several cut points identified participants
who had NFT in the association cortex while completely
sparing the hippocampus or the entorhinal cortex, as
revealed by tau PET. Indeed, several hippocampal spar-
ing participants had normal flortaucipir uptake values
in hippocampus/entorhinal cortex far from any of the
cut points, hence highlighting the ability of tau PET to
identify these cases. However, the more conservative cut
points (i.e., accuracy-based cut point’, ‘Scholl cut point’,
and ‘Maass cut point’) did not detect these cases, at least
in the ADNI data used in our analyses. Hence, our cur-
rent study illustrates the importance of developing and
agreeing upon the cut points for specific brain regions
that are relevant for performing Braak staging in vivo,
and for scientific questions such as identifying subtypes
of AD. Further, the cut points should also be tested and
validated in different large unselected cohorts, in addi-
tion to research cohorts with strict selection criteria like
ADNI [41].

The existence of hippocampal sparing cases with com-
plete sparing of the hippocampus/entorhinal cortex is
supported by recent data suggesting alternative ways of
NFT spread in diseases such as dementia with Lewy bod-
ies (DLB). Flortaucipir uptake in DLB primarily involves
the posterior cortical regions, sparing hippocampus/
entorhinal regions [42-47]. Although more research is
needed to fully understand the meaning of flortaucipir
uptake in non-AD tauopathies [21], this atypical pat-
tern of flortaucipir uptake in DLB matches perfectly with
the characteristic hypometabolic FDG PET pattern in
DLB involving the parietal and occipital cortex [48], as
well as with the location of white matter hyperintense
lesions [49, 50], pattern of white matter disruption [51],
and reduced blood perfusion [52], all of which predomi-
nantly involve posterior brain regions. Interestingly, we
applied our AD subtyping algorithm on 333 DLB par-
ticipants from 15 centers across Europe and showed that
hippocampal sparing was the most common pattern of
atrophy in DLB [53]. This and some other data [9, 54, 55]
led us to propose that comorbid Lewy body pathology
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may be associated with the hippocampal sparing subtype
of AD [1]. However, another cohort reported a higher
frequency of Lewy body pathology in limbic predomi-
nant and typical AD [7], so the association between Lewy
body pathology and AD subtypes still needs to be eluci-
dated. We recently found that the volume of the cholin-
ergic basal forebrain declines more slowly and response
to cholinergic treatment seemed to be better in hip-
pocampal sparing AD [56]. DLB and AD patients with
less hippocampal atrophy respond well to cholinesterase
inhibitors [57-59]. Supporting neuropathologic observa-
tion of lower NFT counts in nucleus basalis of Meynert
in hippocampal sparing AD [4], we suggested that an
intact hippocampus responding to cholinergic input may
be an explanation for good response to cholinergic treat-
ment in DLB and hippocampal sparing AD [56]. Whether
a common pattern of brain atrophy or increased Lewy
body pathology in hippocampal sparing AD, or both, is
the reason for this finding needs to be clarified. It is pos-
sible that a proportion of participants with abnormal
flortaucipir uptake values in the association cortex but
completely sparing hippocampus/entorhinal regions are
indeed individuals with Lewy body disease diagnosed as
AD, as opposed to AD individuals with comorbid Lewy
body pathology. A finding supporting this possibility is
that AD cases with comorbid Lewy body disease likely
have NFT in the hippocampus [7], as typical AD and lim-
bic predominant AD were reported to have the highest
proportion compared to hippocampal sparing AD [4, 7,
60].

MRI studies have consistently identified hippocam-
pal sparing AD cases [1, 3]. However, MRI studies assess
variation in regional brain atrophy. While MRI can reli-
ably track neuropathologically-defined AD subtypes [9],
neuropathologies other than NFT also contribute to the
variation in regional brain atrophy. Hence, a proportion
of participants classified as hippocampal sparing AD in
MRI studies without neuropathologic confirmation may
not have any NFT in the association cortex but rather
have other neuropathologies. Similarly, a proportion
of participants classified as typical AD on MRI studies
may have NFT only in the association cortex with hip-
pocampal atrophy coming from pathologies such as hip-
pocampal sclerosis, TDP-43, or cerebrovascular disease
[61, 62]. Some support for this idea can be seen in our
recent publications by Mohanty et al. [8, 63, 64]. Fur-
ther, the temporal gap between NFT accumulation and
subsequent brain atrophy may be a confounder of hip-
pocampal sparing AD in MRI studies. In other words,
a proportion of participants classified as hippocampal
sparing AD in MRI studies without neuropathologic
confirmation may have a typical pattern of NFT accu-
mulation. For instance, Ossenkoppele et al. [65] recently
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showed that their MRI-defined hippocampal sparing AD
subtype had elevated flortaucipir uptake in the entorhinal
cortex, in addition to prominent flortaucipir uptake in
the association cortex. We also showed that participants
with the MRI-defined hippocampal sparing AD subtype
can be classified as typical AD or even as limbic predomi-
nant AD when using flortaucipir data [8]. In keeping with
the discussion about neuropathologic pathways, the only
study to date that has applied longitudinal clustering on
MRI data showed that the hippocampal sparing subtype
can eventually develop a typical AD pattern of atrophy,
hence involving hippocampus/entorhinal cortex [66].
This would support the “cortical precedence” hypothesis
but analyses at the individual level could confirm whether
some cases could fit in the “distinct cortical” hypothesis
instead.

Future perspectives include accumulation of more
studies using second-generation tau PET tracers, imple-
mentation of the centiloid approach to determine abnor-
mality in tau PET, and expansion of current subtyping
rationale to include subcortical nuclei such as nucleus
basalis of Meynert and locus coeruleus. Most of the
reviewed tau PET subtype studies used flortaucipir, while
we identified two recent studies using the 18F-PI-2620
tracer and one using the 18F-MK-6240 tracer. While flor-
taucipir is excellent in depicting tau pathology in regions
comprising late Braak stages, its performance for early
tau stages is more limited [67, 68]. Second generation
tau PET tracers such as 18F-PI-2620 and 18F-MK-6240
seem more sensitive to early tau pathology [67], which
could help to identify hippocampal sparing cases. This
idea is supported by our current analyses (see Table 3),
but more second-generation tau PET tracer studies are
needed to confirm this finding. Although, head-to-head
studies including several tau PET tracers are scarce,
recent research shows variation in the regional retention
of flortaucipir and second-generation tau PET tracers
(RO-948, MK6240) [68, 69]. A prospect for the future is
to understand the performance of different tau PET trac-
ers in hippocampal sparing cases, and atypical AD cases
in general. Further, cut points are somewhat arbitrary.
For that reason, we investigated five complementary cut
points. Similar to amyloid PET, the centiloid approach is
currently being promoted in the field of tau PET, so that a
single standardized scale can be used [17]. Future studies
should test potential advantages of the centiloid approach
for subtyping. Finally, data suggest that the locus coer-
uleus and nucleus basalis of Meynert may be the earliest
sites for NFT accumulation, preceding NFT in limbic/
cortical brain areas [4, 38, 70, 71]. The field of biological
subtypes of AD has not yet implemented nucleus basalis
of Meynert and locus coeruleus in subtyping algorithms
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and so, we focused our current study on limbic/cortical
NFT.

A limitation of our study is that the percentage of hip-
pocampal sparing as determined by the Murray’s algo-
rithm in [4, 6, 7, 9, 12, 24-27] is partly influenced by
the definition of hippocampal sparing AD in that algo-
rithm (based on the 25th percentile). Nonetheless, our
study shows that the percentages obtained by the Mur-
ray’s algorithm seem to be in the range of percentages
obtained by the other investigated algorithms. The per-
centage of hippocampal sparing AD also varied when
using conservative or lenient cut points for tau PET.
Future studies could use visual rating of tau PET to com-
plement our current approach.

This study demonstrates that tau PET can identify hip-
pocampal sparing cases with NFT completely sparing
the hippocampus. We cannot exclude that neuropathol-
ogy also has the potential to identify those cases, but 7
out of the 8 neuropathologic studies identified in our
systematic review exclusively analyzed cases at Braak
stage IV or higher, which by definition have NFT in the
hippocampus. Future subtyping studies should include
participants ranging from Braak stage 0 to VI. Further,
we introduced three hypotheses of NFT spread in hip-
pocampal sparing AD. Future work needs to investigate
the temporal trajectories of NFT accumulation in hip-
pocampal sparing AD, in vivo, by using longitudinal tau
PET data in amyloid-positive participants along the AD
continuum. This will allow for elucidating the etiology of
hippocampal sparing AD as NFT initiating in association
cortex while completely sparing the hippocampus (the
‘distinct cortical” hypothesis), or whether NFT in both
the association cortex and hippocampus are observed at
advanced Braak stages (the ‘cortical predominance” or
‘cortical precedence” hypotheses). The recent studies by
Vogel et al. [22, 72] and Franzmeier et al. [36] based on
cross-sectional tau PET data showed that, although rare,
some participants show epicenters of tau spreading alter-
native to the entorhinal cortex. For instance, in one of the
subtypes resembling hippocampal sparing AD in Vogel
et al. [22], tau seemed to progress rapidly from parietal to
lateral temporal and frontal regions, sparing the medial
temporal lobes across the entire disease progression [22].
This subtype would fit in the “distinct cortical” hypothesis
and may thus represent hippocampal sparing cases with
NFT completely sparing the hippocampus.

Altogether, based on the accumulating data we sug-
gest that there are perhaps two independent pathways
of limbic/cortical tau spread that initiates with sub-
threshold levels of biomarker-measured pathology,
converting to a minimal degree of pathology in either
hippocampus/entorhinal cortex or association cortex
(i.e., minimal tau subtype in PET studies, or minimal
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atrophy subtype in MRI studies [8]). From that initial
timepoint, the most common pathway would be the
spread of NFT as encapsulated in Braak staging [10].
The less common alternative pathway would be the
spread of tau initiating and progressively accumulat-
ing in the association cortex without any involvement
of the hippocampus and/or entorhinal cortex (the “dis-
tinct cortical” hypothesis), or with involvement of the
hippocampus and/or entorhinal cortex as the disease
progresses (the ‘“cortical predominance” or ‘cortical
precedence” hypotheses) (Fig. 2b-d). In this paragraph
we are mostly discussing limbic/cortical stages of NFT
spreading, since it was suggested that tau pathology
could also start in nucleus basalis of Meynert [4, 38,
70], or even start independently at several sites in par-
allel [70].

We encourage that future studies report NFT counts
or tau PET uptake levels in individual cases, so that
the reader can evaluate the certainty for a hippocam-
pal sparing case to belong to that subtype versus how
cut points may influence that classification. Also, future
neuropathologic studies could investigate NFT counts
in the association cortex in Braak stage 0 or I (in cases
with no NFT in hippocampus). All these suggestions
may help to continue moving the field forward, and our
current study illustrates the importance of harmoniz-
ing the methods for operationalization of biological AD
subtypes across studies [8, 35].
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