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Abstract 

Schizophrenia (SZ) is a severe psychiatric disorder, with a prevalence of 1–2% world-wide and substantial 
health- and social care costs. The pathology is influenced by both genetic and environmental factors, however the 
underlying cause still remains elusive. SZ has symptoms including delusions, hallucinations, confused thoughts, 
diminished emotional responses, social withdrawal and anhedonia. The onset of psychosis is usually in late adoles‑
cence or early adulthood. Multiple genome-wide association and whole exome sequencing studies have provided 
extraordinary insights into the genetic variants underlying familial as well as polygenic forms of the disease. Nonethe‑
less, a major limitation in schizophrenia research remains the lack of clinically relevant animal models, which in turn 
hampers the development of novel effective therapies for the patients. The emergence of human induced pluripo‑
tent stem cell (hiPSC) technology has allowed researchers to work with SZ patient-derived neuronal and glial cell 
types in vitro and to investigate the molecular basis of the disorder in a human neuronal context. In this review, we 
summarise findings from available studies using hiPSC-based neural models and discuss how these have provided 
new insights into molecular and cellular pathways of SZ. Further, we highlight different examples of how these mod‑
els have shown alterations in neurogenesis, neuronal maturation, neuronal connectivity and synaptic impairment as 
well as mitochondrial dysfunction and dysregulation of miRNAs in SZ patient-derived cultures compared to controls. 
We discuss the pros and cons of these models and describe the potential of using such models for deciphering the 
contribution of specific human neural cell types to the development of the disease.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Schizophrenia (SZ) is a complex, highly heritable psychi-
atric disorder. It affects 1–2% of the population  world-
wide and holds substantial health- and  social care costs 
[24]. The onset is usually in late adolescence or early 
adulthood [133]. Psychopathology manifests as a mix-
ture of positive symptoms such as delusions, hallucina-
tions, confused thoughts and negative symptoms like 
lack of emotional responses, reduction in speech, social 

withdrawal and anhedonia. Additionally, patients have a 
high suicide rate [118] experience more physical illnesses 
[90] and reduced life expectancy by nearly 15 years [54].

Dysfunction in dopamine signalling is one of the most 
prominent hypotheses of SZ. Hyperactive dopamine 
transmission has been shown to be associated with psy-
chosis in patients [1, 59], and dopamine D2-receptor 
blockers such as first generation antipsychotics-chlor-
promazine and haloperidol are still widely used as treat-
ments for SZ [79]. However, the dopamine hyperactivity 
hypothesis fails to explain core features such as negative 
and cognitive symptoms, which are not eased by dopa-
mine antagonists. Furthermore, reduced dopamine 
release has been detected in the cortex and striatum of 
SZ patients [122, 141]. The discovery that glutamate 
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NMDA receptor antagonists can induce SZ-like nega-
tive and cognitive symptoms in healthy subjets as well as 
worsen clinical manifestations in SZ patients has led to 
an alternative hypothesis about the involvement of glu-
tamate signalling [72, 85]. This hypothesis claims that 
hypofunction of NMDA receptors can cause excessive 
glutamate release, thereby increasing cortical excita-
tion. Post-mortem studies have shown that GABAergic 
interneurons are specifically affected by NMDA receptor 
dysfunction, as a reduction of NMDA subunit NR2A in 
interneurons leads to decreased expression of GABAer-
gic-related transcripts such as glutamate decarboxylase 
67 (GAD67) and parvalbumin (PV) [14, 164]. This reduc-
tion of GABAergic signalling may in turn cause disinhi-
bition of the postsynaptic excitatory circuits. Building 
on this, animal models have revealed an imbalance of 
excitatory and inhibitory (E-I) activity in cortical circuits, 
including reduced activity of interneurons and GABAe-
rgic deficits in the prefrontal cortex [42, 135]. How-
ever, it remains unclear if this imbalance causes disease 
symptoms.

Today, the first line treatment of SZ is second-genera-
tion (atypical) antipsychotics, which only partially block 
dopamine receptors and have less side effects compared 
to traditional antipsychotics [44]. However, current treat-
ments for SZ are only partially effective, alleviating at 
best psychotic symptoms while still causing considerable 
side effects, and approximately 30% of patients are clas-
sified as treatment resistant [58]. Notably, all available 
antipsychotic drugs are thought to work mainly through 
blockade of the type 2 dopaminergic receptor, and this 
main target has not changed since the discovery of this 
mechanism 60 years ago [21].

Genetic risk factors of schizophrenia
The etiology of SZ is believed to be highly multifacto-
rial, including both common and rare genetic variants 
as well as environmental factors [68]. The first formal 
genome-wide significant association of a single nucleo-
tide polymorphism (SNP) was identified to the ZNF804A 
locus [105]. Subsequently, associations were also found 
to a large region in chromosome 6 corresponding to the 
major histocompatibility complex (MHC) and encom-
passing more than 500 genes [146]. Other SZ associated 
loci include dopamine D2 receptor (DRD2), glutamate 
receptor components (GRM3, GRIN2A and GRIA1) and 
serine racemase (SRR) [41, 124]. In 2018, a new GWAS 
study discovered 50 novel loci associated to schizophre-
nia and showed that common schizophrenia alleles are 
enriched in regions under background selection and 
mutation-intolerant genes [140].

A recent SNP study included 75.000 patients and 
identified 342 independent loci implicating 119 genes, 
which provides novel insights into the genetics of 
SZ [156]. The strength of such more high-powered 
genome-wide association studies (GWAS) is reflected 
in the derived SNP-based heritability in European 
ancestry cohorts of 0.24 (SE 0.007), i.e. roughly a quar-
ter of the variance in liability can be attributed to the 
examined SNPs.  Yet, these common variants are only 
responsible for a small proportion of the genetic con-
tribution to schizophrenia (less than 5%) and vary in 
penetrance [156]. Other genomic studies have revealed 
several rare high risk variants of SZ including copy 
number variations (CNVs) 1q21.1, 3q29, 15q13.3, 
16p11.2 and 22q11.2 [87, 123].

An exome sequencing study including almost 25,000 
patients has further identified ultra-rare protein trun-
cating mutations in 32 genes, most of which are impli-
cated in the formation, structure  and function of the 
synapses and are strongly associated with a risk of 
developing schizophrenia [139]. This discovery has 
pointed to synaptic dysfunction as a possible contrib-
uting cause of SZ. More specifically, the identification 
of ultra-rare variants in the NMDA receptor subunit 
GRIN2A and AMPA receptor subunit GRIA3 suggests 
a dysregulation of the glutamatergic system and of  the 
formation of synapses to interneurons [139].

Importantly, GWAS also identified genes harbour-
ing rare loss-of-function variants such as STAG1, 
FAM120A, glutamate receptor subunit GRIN2A  and 
transcription factor SP4 [139]. The fact that both 
GWAS and exome sequencing studies identified a 
group of genes involved in similar biological processes, 
such as pre-and post-synaptic processes in excitatory 
and inhibitory neurons, supports the convergence of 
common and rare variant associations in SZ. Although 
GWAS and whole exome sequencing are essential tools 
to understand SZ, they must be complemented by epi-
demiological studies to identify environmental compo-
nents contributing to disease risk as well as by cellular 
and molecular studies on SZ models to unravel the 
causal relationships between the genotype–phenotype 
associations identified. In the following section, we will 
summaries the efforts done in developing animal mod-
els of SZ based on genes identified from GWAS stud-
ies. We will then dive into the advancements made in 
the field of using patient-derived or gene-edited human 
induced pluripotent stem cells (hiPSCs) to gain unique 
insights into the molecular and cellular pathways 
underlying SZ genotype–phenotype associations in a 
human neuronal context.
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Animal models of schizophrenia
Currently available animal models of SZ fall into three 
main categories: genetic, developmental and drug-
induced. The first transgenic mouse model to be devel-
oped contained a dominant-negative form the the 
familial SZ gene Disrupted-in-schizophrenia 1 (DISC1), 
and showed impairments in neurons from prefrontal cor-
tex and hippocampus- two regions implicated in SZ [52]. 
DISC1 plays a crucial role during neuronal development, 
however, DISC1 models are controversial, because they 
present only few SZ-like characteristics, but not com-
plete phenotypes [69, 119]. Further, DISC1 is not found 
to be associated with SZ risk in more recent GWAS stud-
ies and its relevance to SZ is therefore questionable [131, 
139]

Other genetic models are conditional knock-outs for 
neuregulin and its receptor ErbB4, showing distinct SZ-
like characteristics. The Neuregulin/ErbB4 knockout 
mouse models exhibit positive symptoms, which disap-
pear after administration of antipsychotic drugs [106, 
157]. However, it should be noted that no single SNP in 
NRG1 has been identified as significantly associated to 
SZ across different patient populations [102, 146]. The 
15q13.3 microdeletion mouse models reproduces symp-
toms such as long-term spatial memory impairment and 
auditory processing deficits, accompanied by neuronal 
hyperexcitability and reduced gamma oscillatory activity 
[36, 40]. Moreover, mice carrying the 15q13.3 microdele-
tion are more susceptible to peripubertal stress, leading 
to stronger SZ-related phenotype in adulthood.

The  22q11.2 deletion SZ mouse models exhibit dys-
function of cortical GABAergic interneurons, defects in 
synaptic transmission and impaired working memory 
[93]. A congenic 22q11.2 model was recently developed 
to avoid confounding effects of mutations in the back-
ground mouse strains. This model confirmed SZ-like 
characteristics such as prepulse inhibition (PPI) deficits 
and increased sensitivity to NMDA receptors and also 
showed an increase in the dopamine metabolite DOPAC 
in prefrontal cortex [32]. Mice carrying a 1q21.1 micro-
deletion also recapitulates key features of the dopamine 
hypothesis and is together with the 22q11.2 deletion 
model a new powerful tool to study dopamine alterations 
in SZ [99].

Maternal immune activation (MIA) in response to 
environmental factors like an infection, produces irre-
versible changes in CNS development and increases the 
risk for the unborn child to develop SZ later in life [67, 80, 
100]. A mouse model using polyriboinosinic-polyribocy-
tidilic acid (PolyIC) as an MIA-inducer similarly shows 
altered social interaction, cognitive decline and neurode-
velopmental impairments in the affected offspring [27, 
148]. Mouse models with NMDAR hypofunction were 

developed based on the observation that administration 
of NMDAR antagonists could lead to SZ symptoms in 
healthy subjects [72].

One of the most established models is a drug-induced 
model in which chronic administration of ketamine rec-
reates numerous SZ-relevant phenotypes like interneu-
ron impairment and altered cognition [35, 88]. In line 
with this, a rat model of apomorphine-induced SZ-like 
features also shows an imbalance of excitatory and inhib-
itory (E-I) activity in cortical circuits, including reduced 
activity of interneurons and GABAergic deficits in the 
prefrontal cortex [135].

These animal models are extremely valuable for inves-
tigating the potential underlying pathophysiology of SZ, 
however they are also hampered by challenges relating to 
species differences. The human cortex has gyrification, 
and contains > 1000-fold the number of neurons found 
in the mouse cortex [51]. Although the main neuronal 
cell types are relatively conserved between mammals, 
there are key differences in the cellular features of human 
neurons which are relevant for neuropsychiatric disor-
ders [168]. In particular, the importance of the prefrontal 
cortex in human SZ can likely not be modelled in mice, 
where this structure is much smaller and less crucial for 
mouse behaviour [20]. As psychotic symptoms cannot be 
modelled in rodents, interpretation of the results from 
animal models should be carefully considered. Addition-
ally, the interplay between the genetics and environmen-
tal factors, which could trigger SZ in humans is difficult 
to model in mice and currently there is no available ani-
mal model that mimics the complex etiology or polygenic 
background of SZ.

Findings from hiPSC‑based models 
of schizophrenia
A major limitation in understanding development of SZ 
is the gap existing in unravelling the causality between 
the many identified SZ risk genes and the pathology of 
the disease. Postmortem studies of patients have identi-
fied reduced neuronal size and spine density in the pre-
frontal cortex and hippocampus [163], and MRI scans 
reveal connectivity deficiencies, neurotransmitter dys-
functions, reduction of brain gray matter and an abnor-
mal distribution of neurons in the prefrontal cortex [6, 
138, 170]. However, postmortem tissue cannot be used 
to perform dynamic or interventional cellular studies on 
the pathways involved. Human induced pluripotent stem 
cells (hiPSCs) can be derived from any somatic tissue, 
including subject’s skin or blood cells, through repro-
gramming to the pluripotent state [149]. These derived 
hiPSCs can then in turn be used to generate cell types of 
the brain for in vitro.
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Although most  studies on hiPSC-derived SZ  neurons 
studies about SZ have used 2-dimensional (2D) neuronal 
cultures, technical advances have lately allowed for gen-
eration of hiPSC-derived 3-dimensional (3D) brain orga-
noids, which display self-organising capacities mimicking 
the anatomical structures of the early human fetal cor-
tex [73]. Such 3D brain models can in some cases more 
accurately mimic the complexity of specific brain region 
development and cell interactions [34, 136].

In this review, we systematically summarize the body 
of published work related to SZ-associated cellular phe-
notypes identified in hiPSC studies, and we find that the 
identified cellular mechanisms can be categorized into 
changes in neurogenesis, neuronal maturation, reduced 
neuronal connectivity, neurite outgrowth, synaptic and 
mitochondrial dysfunction and impairments of the glial 
cells (Figs.  1 and 2, Table  1). Below, we summarise the 
findings obtained from hiPSC-based SZ models into 

each of these categories, and we provide an overview in 
Table 1 of all the studies discussed.

Neurogenesis and neuronal maturation
An early study from 2011 showed reduced neuronal con-
nectivity, decreased neurite number and altered gene 
expression  in SZ-derived neurons [17]. Many compo-
nents of glutamate, cAMP and WNT signaling path-
ways were affected and altered in these  patient-derived 
neuronal cultures. Administration of the antipsychotic 
loxapine significantly increased neuronal connectivity 
and restored dysregulated gene expression [17]. Aberra-
tions in hippocampal neurogenesis have been implicated 
in SZ pathology [47]. In line with this, reduced capacity 
of hippocampal neurogenesis from NPCs, lower levels 
of  mature granule neuron markers NEUROD1,  PROX1 
and TBR1 and reduced neuronal activity and neurotrans-
mitter release has been observed in SZ patient-derived 
neurons [167].

Compromised differentiation into cortical neurons, 
significant reduction of neurite length, outgrowth 
and reduced calcium signaling in SZ patient-derived 
neurons has also been shown [45]. These findings are 
consistent with a study, where cellular models of 15 
patients diagnosed with 22q11.2 deletion syndrome 
(22q11DS) revealed perturbed neuronal excitability, 
alterations in spontaneous firing and depolarization 
in 2D glutamatergic neurons and 3D organoids [66]. 
Further electrophysiological and imaging analyses 
showed an increase in excitability and impaired depo-
larization-induced L-type calcium channels (LTCC) 
calcium signaling in 22q11DS-derived neurons, which 
were related to a defect in the resting membrane poten-
tial (RMP) that caused voltage-dependent inactiva-
tion of calcium channels. Additionally, heterozygous 
loss of  DGCR8  was sufficient to recapitulate the func-
tional defects observed in 22q11DS neurons. Likewise, 
22q11.2DS defects could be rescued by overexpression 
of DGCR8 and administration of antipsychotics, which 
restored the calcium and membrane potential altera-
tions [66].

15q11.2 CNVs are leading risk factors for neuropsy-
chiatric disorders, including SZ [86]. Neural precursor 
cells derived from 3 SZ patients hiPSCs with 15q11.2del 
mutation displayed NPC deficiencies in adherence junc-
tions and apical polarity. The underlying reason was 
haploinsufficiency of CYFIP1 located in 15q11.2 region, 
which encodes a subunit of the WAVE complex control-
ling actin cytoskeleton. Animal studies showed that defi-
ciency in Cyfip1 and WAVE signaling similarly affected 
radial glial cells leading to their ectopic localization out-
side of the ventricular zone in developing mouse cortex 
[166]. Interestingly, Cyfip1 interacts with Fmrp and cap 

Fig. 1  An overview of hiPSCs as a tool to investigate schizophrenia 
in vitro models. Fibroblasts, blood cells or keratinocytes from 
control subjects and/or schizophrenia patients are collected and 
reprogrammed to hiPSCs—some of which may be gene corrected 
and used as isogenic controls. The established hiPSCs can then 
be differentiated into the cells of interest, for example, neuronal 
progenitors cells (NPCs), neurons, glia or used for 3D or mixed 
cultures to model schizophrenia in vitro. Several readout methods 
such as single cell RNA (sc-RNA) sequencing, different cellular assays, 
cell imaging, mass spectrometry and electrophysiology can be used 
to investigate cell cultures in vitro
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protein eIF4E to regulate activity-dependent protein 
translation in mature neurons in mice [95]. Transcrip-
tome analysis on 8 SZ patient-derived neurons with 
22q11.2 DS showed twofold reduction in expression of 
almost all the genes in 22q11.2 region, including pertur-
bations in gene expressions were found in apoptosis, cell 
cycle and survival and MAPK signaling pathways [81].

Contactin-associated protein-like 2 (CNTNAP2), a 
member of the neurexin family, functions as cell adhesion 
molecule, is associated with SZ [61, 126]. Cntnap2 plays a 
role in axon guidance, dendritic arborization and synap-
togenesis based on animal studies [3, 116]. Forebrain and 
NGN2-induced excitatory neurons were derived from 
2 carriers of heterozygous intragenic  CNTNAP2  dele-
tions, one affected and one unaffected [37]. CNTNAP2 
deletion affected expression of genes involved in synaptic 
transmission, neuronal development and neuronal activ-
ity in NGN2-induced glutamatergic neurons. Addition-
ally, increased spontaneous network level activity in both 
patient neuronal populations were observed. These find-
ings suggest that heterozygous CNTNAP2 deletions may 
affect genes involved in neuronal development and activ-
ity. Furthermore, reduced neural migration was found 
in forebrain NPCs from schizoaffective disorder patient 
harboring deletion in CNTNAP2. This phenotype cor-
related with the exon and allele specific expression pat-
terns of CNTNAP2 in hiPSC-derived NPCs, neurons 
and oligodendrocyte precursor cells (OPCs) from one 
patient with CNTNAP2 deletion [75]. Protein kinases 
phosphorylate proteins, regulate important pathways for 
synaptic transmission, plasticity, circuit formation and 
refinement during development [7, 43]. Therefore, dys-
regulation in kinase signaling might contribute to the 
synaptic impairment and is often associated with neuro-
logical and neuropsychiatric disorders [7, 26]. Investiga-
tion of  hiPSC-derived cortical excitatory neurons from 
one SZ patient with a  4  bp mutation in DISC1 showed 
global reduction of serine/threonine kinase activity, 
AMP-activated protein kinase (AMPK), extracellular sig-
nal-regulated kinase (ERK) and thousand-and-one amino 
acid (TAO) kinases [11]. This data supports a role of 
kinase impairment in SZ pathology and suggests kinases 
as a possible target for drug discovery.

Neurexins are the main regulators of neural circuits 
that control presynaptic release probability, postsynap-
tic receptor composition and synaptic plasticity [4]. In 
addition to that, NRXN1 encodes the presynaptic cell-
adhesion molecule neurexin-1 [87]. Among CNVs associ-
ated with SZ, 2p16.3 CNVs affect expression of NRXN1 
[87]. SZ patient-derived neurons with NRXN1 deletions 
from 3 patients and engineered human neurons with 
NRXN1 deletions displayed the same global decrease 
in neurotransmitter release and an increase in CASK 

protein, which is an intracellular NRXN1-binding pro-
tein. A distinct finding of this study was that engineered 
mouse Nrxn1-deficient neurons did not exhibit the same 
phenotype, which could imply a human-specific role 
for NRXN1 [109]. Another study of SZ patient-derived 
glutamatergic and GABA-ergic neuron cultures with 
NRXN1 ± showed decreased levels of NRXN1 WT iso-
forms and unexpected expression of novel isoforms from 
mutant allele in patient neurons. Besides, NRXN1 ± neu-
rons were not capable to fully mature [38]. These findings 
suggest a synaptic pathophysiological mechanism of SZ, 
where neurexins could be a target for new treatments.

Neuronal connectivity and synaptic impairment
In the developing human brain cortex, synaptic density 
increases significantly until childhood whereas, during 
adolescence, the number of synapses gradually decreases 
until third decade of life [117]. Brain-specific tyrosine 
phosphatase, STEP (STriatal-Enriched protein tyrosine 
Phosphatase) together with STEP61, a membrane-associ-
ated phosphatase found in the postsynaptic density, are 
important regulators of synaptic function [15, 115]. It is 
known that STEP61 is elevated in postmortem brains of 
SZ patients, as well as in mice treated with psychotomi-
metics [23].

Forebrain neurons derived from 13 SZ patients (5 
patients with childhood onset schizophrenia harboring 
CNVs) and 14 healthy subjects demonstrated increased 
levels STEP61 and reduced ubiquitination of STEP61 
in patient-derived forebrain neurons [165]. Addition-
ally, inhibition of STEP61 increased phosphorylation of 
STEP61 targets, which induced spontaneous neuronal 
activity in SZ neurons [165].

Reduced PSD95 density was observed in an early 
study with SZ patient-derived neurons [17]. These find-
ings were consistent with results from a  later study 
where lower levels of Synapsin I, PSD-95 and reduced 
number of synapses were observed in SZ-patient 
derived glutamatergic neurons [125]. Neuronal cultures 
derived from 3 SZ patients displayed a low expression 
of the inhibitory synapse marker gephryn and PSD95 
[45]. Glutamatergic and GABAergic cultures derived 
from a  RELN  deletion SZ hiPSC line exhibited abnor-
malities in synapse formation in  vitro [57]. Reduced 
numbers of Synapsin I and Homer I (presynaptic or 
postsynaptic markers for GABAergic neurons) and 
gephyrin (postsynaptic scaffolding protein in GABAe-
rgic synapses) were found. This data indicates overall 
reduced formation of excitatory as well as inhibitory 
synapses [57, 97]. GABAergic deficits in the prefrontal 
cortex are one of the major findings in post-mortem 
brain tissue, which indicates a decrease in the activity of 
cortical interneurons (cINs) [56]. In concordance with 
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this, cINs derived from SZ hiPSCs showed lower levels 
of GAD67, gephryn and Neuroligin-2 (NLGN2). These 
findings were reproduced in co-cultures with excitatory 
neurons derived from 9 SZ patients and 9 healthy con-
trols [65]. Interestingly, NLGN2 overexpression in SZ 
neurons rescued synaptic puncta deficits while NLGN2 
knockdown in healthy neurons resulted in reduced syn-
aptic puncta density [65]. In another study, increased 
membrane resistance and overall Na+ channel function 
was altered in cortical neurons derived from individu-
als with SZ [108].

A study of 14 SZ patient-derived cINs showed dysreg-
ulated expression of protocadherin genes [137]. Addi-
tionally, SZ patient-derived cINs exhibited reduced 
synaptic density and arborization. These deficiencies 
were reversed by Protein Kinase C inhibitors, which 
is a downstream kinase in the protocadherin path-
way. Same phenotype was found in adult post-mor-
tem brains from SZ patients and mouse models [137]. 
Alterations in glycosaminoglycan, GABAergic synapse, 
sialylation, purine metabolism pathways were identi-
fied in the cortical neurons derived from monozygotic 
twins discordant for SZ. Moreover, up to 61% of the ill-
ness-related genes were found to be sex specific [151]. 
A further study revealed increased levels of dipeptidyl 
peptidase-like protein 6 (DPP6), an accessory subu-
nit of Kv4.2 voltage-gated potassium channels in SZ 
patient-derived cortical neurons, which caused reduc-
tion in neuronal activity [97].

Disrupted in Schizophrenia 1 (DISC1) is a protein 
encoded by DISC1 gene in humans. Polymorphisms 
and deletions in this gene have been associated with 
different psychiatric conditions, such as bipolar disor-
der, autism, major depression and SZ [128, 150]. The 
study of family members, where a daughter was carry-
ing a 4  Mb deletion in DISC1 and diagnosed with SZ, 
displayed several synaptic abnormalities [161]. Mutant 
DISC1 reduced synaptic vesicle release, accompa-
nied with lower levels of Synaptic vesicle (SV) protein 
2 and lower frequency of excitatory spontaneous syn-
aptic currents in SZ patient-derived forebrain neu-
rons. Notably, mutant DISC1 dysregulated expression 
of genes related to synapses, nervous system devel-
opment, dendritic spine function pathways and psy-
chiatric disorders in human forebrain neurons [161]. 
Isogenic correction of  DISC1 mutation reversed these 
defects. Another group generated isogenic hiPSC 
lines with engineered mutations in exon 2 and 8 of 
the DISC1, leading to loss of long DISC1 isoforms and 
affecting NPC proliferation, baseline WNT signaling 
and the expression of NPC fate markers such as FOXG1 
and TBR2 [143].

Mitochondrial dysfunction
Mitochondria are involved in neuronal activity, impor-
tant for synaptic function [9], Ca2+ signaling [46, 91], 
generation of action potentials [158] ion homeostasis [30, 
53] and ATP synthesis. Neural cells derived from a SZ 
patient presented a two-fold increase in extramitochon-
drial oxygen consumption and increased levels of ROS. 
The elevated ROS levels were reverted by the mood stabi-
lizer valproic acid (VPA) [113].

Mixed dopaminergic and glutamatergic neuron cul-
tures derived from 3 SZ patients presented impaired 
differentiation capacity to dopaminergic cells and incom-
plete maturity of glutamatergic cells, accompanied by 
disrupted metabolism of dopamine and glutamate [125]. 
Morphological abnormalities were observed only in the 
dopaminergic cells, and mitochondrial functional impair-
ments, uneven cellular distribution of organelles, dissi-
pation of mitochondrial membrane potential (Δψm) and 
perturbations in mitochondrial network structure and 
connectivity were found [125].

Significantly reduced ATP levels and reduced activity 
in oxidative phosphorylation complexes I and IV of the 
electron transport chain (ETC) in SZ patient-derived 
neurons with 22q11.2DS have also been observed [77]. 
Further, levels of protein products of mitochondrial-
encoded genes such as MT-ND1 (complex I), cytochrome 
b (complex III), and COX1 (complex IV) were signifi-
cantly reduced. One of the deleted genes in the 22q11.2 
region is mitochondrial ribosomal protein L40 (MRPL40) 
[22], a SZ risk gene, which was reduced both in protein 
and mRNA levels in 22q11.2DS neurons [77]. In sup-
port of this, transgenic mice lacking one copy of Mrpl40 
show alterations in mitochondrial calcium and exhibited 
psychosis-related cognitive deficits [31]. A healthy con-
trol hiPSC with engineered heterozygous mutation of 
MRPL40 line revealed similar deficits in mitochondrial 
DNA-encoded proteins, ATP levels and complex I and IV 
activity, indicating that 22q11DS MRPL40 heterozygo-
sity leads to reduced mitochondrial ATP production and 
altered mitochondrial protein expression.

Differentially regulated proteins in pathways related to 
mitochondrial function, oxidative phosphorylation, cell 
cycle control, DNA repair, Ca2+ homeostasis and neu-
ritogenesis were observed in a study using hiPSCs from 
3 non-familial SZ patients [171]. Metabolic analysis of 
patient-derived NSCs showed reduced levels of non-
mitochondrial oxygen consumption, increased basal res-
piration and ATP production. Further, increased levels 
of glycolytic proteins of axonal guidance, glycolysis and 
ROS were identified in these SZ-neurons.

Likewise, mitochondrial impairments such as lower 
basal consumption rate, ATP production, proton 
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leak, nonmitochondrial oxygen consumption, dimin-
ished response to stimulation and depolarization were 
observed in brain organoids from another study with 
non-familial SZ patient hiPSCs [64].  Analysis of gene 
expression revealed dysregulation of genes involved in 
mitochondrial function as well as modulation of E-I bal-
ance [64]. In support of this, reduced number and altered 
mitochondrial morphology were observed in NPCs and 
hippocampal DG granule cells from one SZ patient with 
de novo mutations in leucine-rich repeat containing 7 
(LRRC7), K-homology type splicing regulatory protein 
(KHSRP), killer cell immunoglobulin-like receptor 2DL1 
(KIR2DL1) [50].

Furthermore, a  study with SZ patient-derived cINs 
showed dysregulated OxPhos related gene expression 
and compromised mitochondrial function, ultimately 
resulting in oxidative stress in the cells [98]. OxPhos defi-
cit in cINs was reversed by Alpha Lipoic Acid/Acetyl-L-
Carnitine (ALA/ALC).

A study with 8 individuals with 22q11DS (4 were SZ 
patients) showed that only neurons derived from the 
affected carriers (22q + SZ) had reduced ATP levels and 
OXPHOS activity. Neurons from unaffected individu-
als carrying 22q11DS (22q-SZ) had significantly upregu-
lated genes, which encode OXPHOS subunits [78]. For 
instance, NDUFV2 expression was increased by 50% 
only in the 22q-SZ group. Additionally, expression of 
genes involved in mitochondrial biogenesis, for example 
PGC1α, showed a similar pattern of upregulation in the 
22q-SZ group compared to the control and the 22q + SZ 
groups. In summary, several studies point towards 
impairments in oxidative phosphorylation and ATP pro-
duction in neuronal in vitro models of SZ, and this may 
be a main underlying disease driver in 22q11DS patients.

Developmental impairments mediated by miRNAs
MicroRNAs (miRNAs) are small non-coding RNAs 
that regulate gene expression by inhibiting translation 
or degrading RNA [8]. Strong evidence suggests that 
miRNAs, particularly miR-137, may contribute to the 
development of SZ [124]. Moreover, the coding region 
for a member of miRNA biogenesis, DGCR8, is located 
within 22q11.2, the most common SZ-associated CNV 
[63].

miR-19 expression modulates the migration and 
maturation of adult-borne  neurons in the brain  by 
suppressing Rap guanine nucleotide exchange fac-
tor 2 (Rapgef2) [48]. miR-19 was downregulated in SZ 
patient-derived NPCs and resulted in aberrant migra-
tion of the NPCs in the brain. Additionally, the aber-
rant expression of miR-19 inversely correlated with 
the expression of Rapgef2 [48]. These findings imply 

that dysregulation of miR-19a in the brain maybe also 
affects development of SZ.

Downregulation of miR-9 was observed in childhood 
onset SZ patient-derived NPCs from individuals car-
rying CNVs (22q11.2, 1p33, 16p11.2, 3p25.3, 2p16.3) 
[154]. Downregulation of miR-9 inhibited NPC pro-
liferation by suppressing nuclear receptor TLX, which 
regulates NPC proliferation and self-renewal [121]. 
miR-9 effects are mediated by small changes in indirect 
miR-9 targets, rather than sizeable changes in direct 
miR-9 targets. Retroviral overexpression of miR-9 
restored radial neural migration deficit in SZ-derived 
NPCs, whereas knockdown partially induced aberrant 
migration in control NPCs. Overall, reduced activity of 
miR-9 may contribute to the risk of developing SZ.

miR-219 is expressed in OPCs [83] and promotes 
oligodendrocyte differentiation by repressing nega-
tive regulators of this process [33]. miR-219 is amongst 
the most highly upregulated miRNAs in brain regions 
of SZ patients [13, 142]. In alignment with this, a study 
showed upregulation of miR-219, downregulation 
of TLX and impaired proliferation in DISC1-mutant 
hiPSC-derived NPCs [94]. Overexpression of TLX or 
downregulation of miR-219 rescued reduced prolifera-
tion in these cells. This study indicates  that elevation 
of miR-219 expression reduces NSC proliferation in SZ 
patients.

Implications of glial cells in schizophrenia
Over the past decade there has been accumulating evi-
dence that glial cells may contribute to the pathogenesis 
of SZ [12]. During development, excessive activation of 
microglial cells, together with the genetic predisposi-
tion of the individual could collectively contribute to 
the development of SZ [74]. During human brain devel-
opment a major function of microglia is synaptic prun-
ing [130]. It was shown that excessive synaptic pruning 
by microglia contributes to the reduction in synapse 
density in SZ patients [19, 132]. Additionally, reduced 
synaptic density was observed in a postmortem adult 
brain from SZ patient [70]. Schizophrenia’s strongest 
genetic association at a population level involves varia-
tion in MHC locus, arising in part from many structur-
ally diverse alleles of the complement component 4 (C4) 
genes  [132]. These alleles generate highly varying levels 
of C4A and C4B expression in the brain, with each com-
mon C4 allele associating with SZ in proportion to its ten-
dency to generate greater expression of C4A. Human C4 
protein localizes to neuronal synapses, dendrites, axons 
and cell bodies and is believed to be involved in synap-
tic pruning [132]. In line with this, increased elimination 
of synaptic structures has been observed by SZ patient 
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hiPSC-derived microglia [134]. The majority of uptaken 
particles stained positive for PSD-95, and engulfment of 
particles was partly modulated by human SZ risk vari-
ants at C4 locus [134], which is concordant with human 
postmortem adult brain studies [132]. Minocycline, a 
tetracycline with high brain penetrance, reduced synapse 
uptake in  vitro in a dose-responsive fashion. Moreover, 
the reduction of psychosis associated with administra-
tion of minocycline in adolescents and young adults was 
detected by electronic health records (EHRs) [134]. These 
findings could suggest excessive pruning as a potential 
druggable target for treatment of SZ.

cINs, especially those expressing PV or somatostatin 
(SST), are strongly affected in individuals with SZ [76]. 
Altered cIN neurotransmission in SZ may account for 
abnormalities in gamma oscillations, which are associated 
with cognitive impairments in SZ patients [159]. Tran-
scriptome analysis showed that SZ patient-derived cINs 
cocultured with activated microglia impaired metabolic 
pathways, compromised mitochondrial function, arbori-
zation, synapse formation and synaptic GABA release in 
cINs [111]. Deficits in mitochondrial function and arbo-
rization were successfully reversed by Alpha Lipoic Acid/
Acetyl-L-Carnitine (ALA/ALC). Interestingly, only SZ-
derived cINs cultures showed impaired metabolic path-
ways after removal of inflammatory factors.

Human astrocytes perform different roles in neuro-
transmitter release and uptake, supply neurons with sub-
strates for energy metabolism, control extracellular water 
and electrolyte homeostasis in the brain, therefore they 
might be potential candidates for immune abnormalities 
in the development of SZ [160]. Human glial-mouse chi-
meras (i.e. mice transplanted glial cells from childhood-
onset SZ patients) revealed several abnormalities such as 
premature migration of glial progenitors into mouse cor-
tex, abnormal astrocytic morphology, delayed astrocytic 
differentiation and hypomyelination [162]. Additionally, 
elevated anxiety (elevated plus maze), sleep abnormalities 
(diurnal activity and sleep patterns test), reduced social 
interactions (three chamber test) in these mice were 
observed.

Along similar lines, a study on monozygotic twins dis-
cordant for SZ showed that patient hiPSC-derived astro-
cytes were able to differentiate with similar efficacy as 
control-astrocytes, expressed common astrocyte mark-
ers and performed glutamate uptake. However, aberrant 
expression of glutamatergic and GABAergic receptor 
genes in the SZ astrocytes was observed  in a preprint 
study [71]. Glutamate receptor signaling appeared in the 
male but not female affected vs. unaffected twin com-
parison. In addition, SZ-astrocytes exhibited sex-spe-
cific gene expression alterations, which were deviated in 
Glutamate Ionotropic Receptor Kainate Type Subunit 

2 (GRIK2). This gene was significantly upregulated in 
males but downregulated in females. Additionally, path-
ways related to neuronal wiring and inflammation were 
altered in SZ-astrocytes. Also, many adhesion and col-
lagen genes were differentially expressed in SZ-astro-
cytes. This study demonstrated that expression of neural 
cell adhesion molecule L1-like protein (CHL1) between 
affected and unaffected males and females and between 
unaffected and healthy males was significantly altered. 
One of the functions of CHL1 is to regulate neuronal sur-
vival and growth and induce dendritic spine pruning in 
developing pyramidal neurons together with Semaphorin 
3B. Astrocyte progenitors were transplated in mice brain 
to mature, which induced subtle behavioral changes in 
cognitive and olfactory functions and changes in gene 
expression in demyelination, synaptic dysfunction and 
inflammation pathways in mouse. All in all, this pre-
print  study suggests a significant contribution of astro-
cytes to sex-specific risk in the development of SZ [71].

Another study found significantly reduced numbers 
of O4-positive cells from SZ patient lines, correlating to 
the reduction of white matter in the same individuals, 
as assessed by MRI [89]. A complimentary study inves-
tigated oligodendrogenesis in the context of familial SZ 
from siblings with missense mutations in the Chon-
droitin sulfate proteoglycan 4 (CSPG4) gene [29]. OPCs 
derived from CSPG4A131T carriers had impaired post-
translational processing, subcellular localization of the 
mutant NG2 protein, aberrant cellular morphology and 
decreased cell viability and myelination capacity. This 
was in alignment with clinical findings showing impaired 
global white matter integrity in patients by diffusion ten-
sor imaging [29]. Altogether, these results point that dys-
function in OPC development can be a significant player 
in SZ development.

Disease modelling using brain organoids
3D models or brain organoids can be derived from 
hiPSCs or hESCs and provide the opportunity to bet-
ter model complex structures of the human brain such 
as ventricular zone neurogenesis, neural circuits and 
regional connectivity [39, 60, 84]. A study looking at 
neurogenesis in brain organoids found abnormal disper-
sion of SZ patient-derived NPCs from the ventricular 
zone (VZ) into the intermediate (IZ) and cortical zones 
(CZ) in SZ patient-derived cultures compared to controls 
[145]. This study further identified restricted neuronal 
growth, resulting in truncated cortical development and 
decreased intracortical connectivity. The decreased intra-
cortical connectivity was specified by changes in the ori-
entation and morphology of calretinin positive cINs. This 
evidence suggests that SZ might be programmed at the 
preneuronal stage and involves a common mechanism 
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of dysregulated Integrative Nuclear FGFR1 (nFGFR1) 
signaling. nFGFR1 binds to the promoters of genes that 
control the transition from proliferation to cell differenti-
ation and to the morphogens that delineate the body and 
CNS axes, construct the nervous system [96]. Consistent 
with earlier reports, nFGFR1 signaling was dysregulated 
in SZ patient-derived brain organoids, contributing to 
abnormalities in the cortical architecture [96, 145].

In line with this, brain organoids with DISC1 muta-
tion showed reduced size, disorganized rosette structure 
and reduced NPCs proliferation. This phenotype was 
phenocopied by WNT agonism and rescued by WNT 
antagonism. Moreover, this study revealed alterations in 
expression of genes important to neuronal development, 
like POU3F2/BRN2 and CALB1 [144]. DISC1 mutation 
effects were also studied in sliced human brain organoids, 
where the mutation was found to cause a loss of proper 
layer formation [120]. In addition to that, deficits of 
impaired laminar distribution and increased marker co-
expression phenocopied control SNOs treated with the 
β-catenin antagonist IWR, indicating a possible role of 
WNT signaling in the pathogenesis of SZ. However, the 
relevance of DISC1 mutation in SZ pathology is debat-
able, as this gene does not appear to be a clear genetic 
risk factor for SZ in newer GWAS or exome sequencing 
studies.

A study applying brain organoids and forebrain NPCs 
from pairs of monozygotic twins discordant for SZ found 
increased neuronal differentiation, GABAergic specifica-
tion and altered E-I balance in the brain organoids from 
the affected twin [129]. Interestingly, this also involved 
a reduced WNT signaling which could be restored after 
treatment with LiCl. Two monozygotic twin pairs dis-
cordant for SZ displayed excess GABAergic specifica-
tion of their NPCs, which was followed by increased 
expression levels of GABAergic synapse-related genes. 
This study suggests that altered E-I balance during brain 
development might underlie the development of SZ.

As previously discussed, activation of prenatal immu-
nity might contribute to SZ pathogenesis, due to secre-
tion of inflammatory factors such as tumor necrosis 
factor-α (TNF-α). SZ patient brain organoids exposed to 
the cytokine TNF, led to abnormal dispersion of NPCs 
through VZ and CZ, which is concordant with pheno-
types from Stachowiak et  al., in 2017 [10]. Additionally, 
loss in cellular compostion and  disorientation of cINs 
were observed in SZ patient-derived organoids and 
organoids exposed to TNF. Both SZ- and TNF-induced 
malformations were associated with the loss of nuclear 
nFGFR1 form in the CZ and its upregulation in deep IZ 
regions. Evidently, 3D models provide the opportunity to 
investigate molecular mechanisms for TNF-dependent 

neurodevelopmental pathology of SZ, its connections to 
maternal infections and elevated immunity during pre-
natal development. Moreover, transcriptomic analysis 
showed dysregulation in extracellular matrix pathways 
in SZ patient-derived migrating cINs, whereas sphere 
cINs from SZ patients showed dysregulation in immune 
pathways with HLA genes being mostly affected [112]. 
A transcriptional analysis of SZ patient hiPSC-derived 
brain organoids revealed downregulation of multiple 
neuronal factors such as MAP2, TUBB3, SV2A, GAP43, 
CRABP1, NCAM1 [103]. This study further identified 
prominent alterations in neurodevelopmental factors 
such as COMT, PLCL1 and POU-domain fragments 
POU3F2/BRN2, which were downregulated, as well as 
altered expression of novel GWAS factors, Pleiotrophin 
(PTN) and Podocalyxin (PODXL) in patient organoids. 
SZ patient-derived brain organoids showed lower NPCs 
survival, which led to formation of fewer neurons [103]. 
This study further identified that transcription factor 
BRN2 and growth factor PTN operate as mechanistic 
substrates of neurogenesis and cellular survival in patient 
organoids. 

Discussion
Main mechanistic insights from hiPSC‑based studies
Despite extensive efforts in performing GWAS analyses 
in hundreds of thousands of SZ patients, the underlying 
cause of the disease is still largely unknown. Studies of 

Fig. 2  Schematic representation of key findings from studies on 
hiPSC-derived neurons. Neuronal defects found in hiPSC-based 
models of SZ can be characterized as reduced neuronal connectivity 
and neurite outgrowth, synaptic and mitochondrial dysfunction as 
well as neurodevelopmental and miRNA impairments. Additionally, 
changes in electrophysiology can be characterized as reduced 
neuronal firing, excitability, depolarization and overall neuronal 
activity
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adult postmortem brain tissue from SZ patients and ani-
mal models have provided substantial knowledge on the 
pathology of the disease. However, these approaches have 
significant limitations, as animal models do not recapitu-
late the polygenic nature of the disease, and post-mortem 
studies may be hampered by delays in tissue preservation 
which interfere with RNA, DNA and protein preserva-
tion, making molecular and biochemical studies biased. 
Additionally, post-mortem tissues do not allow for 
dynamic molecular and cellular intervention studies.

hiPSCs allow for derivation of different brain spe-
cific cell types such as cortical neurons, microglia and 
interneurons, thereby yielding the opportunity to create 
SZ patient-specific disease models to investigate cellular 
and molecular phenotypes [2, 92, 101]. The use of SZ-
derived hiPSC models have overall converged on identi-
fying impairment in neuronal maturation and reduction 
of neurite length and outgrowth as one of the hallmarks 
of SZ-derived cells [17, 45, 57, 66, 75, 125]. Another 
hallmark identified in several studies was an E-I imbal-
ance, including increased neuronal specification into 
GABAergic neurons and upregulation of genes, related 
to GABAergic neurotransmission [66, 111, 129]. This is 
in concordance with the E-I imbalance hypothesis gener-
ated from clinical findings of SZ patients [82, 107]. Syn-
aptic impairments and overall reduction in the formation 
of excitatory and inhibitory synapses were also identified 
in several studies, including reduced expression of synap-
tic proteins such as PSD95, Synapsin I and Gephryn [17, 
45, 57, 65, 97, 125]. Likewise, mitochondrial functional 
impairments, uneven cellular distribution of organelles, 
dissipation of mitochondrial membrane potential (Δψm), 
reduced ATP and perturbations in mitochondrial net-
work structure and connectivity were identified by differ-
ent groups [31, 50, 64, 77, 125]. Strong evidence suggests 
that miRNAs are strongly involved in the development of 
SZ [124], and in line with this, several studies have shown 
dysregulation of miRNAs in hiPSC models of SZ [48, 94, 
121, 154]. Additionally, accumulating evidence showed 
that glial cells may contribute to the pathogenesis of SZ 
[12], and dysfunctional microglia and astrocytes were 
highlighted in various articles [19, 71, 111, 132, 134]

3D models or organoids display the spatial organiza-
tion of the neural and glial brain cells, which gives the 
chance to investigate cell–cell interactions, therefore it 
is useful tool to investigate development of SZ [10, 104, 
145]. However, a limitation of organoids is batch to batch 
variability in cellular composition, size of the structure 
and complications of a  necrotic core. This could poten-
tially be addressed by 3D printing or by developing vas-
cular systems in organoids [18, 57] and 3D printing.

Are we studying the right cell types?
Recent studies from different research groups have inte-
grated single-cell RNA sequencing (scRNAseq) data with 
GWAS data from large SZ cohorts to identify the cell 
types with the highest enrichment for expression of SZ-
associated risk genes. An initial 2018 study by Skene et al. 
cross-referenced data from two large-scale SZ GWAS 
studies [110, 124] with scRNAseq data from the adult 
mouse brain, and they found significant enrichment for 
SZ risk genes in hippocampal CA1 pyramidal neurons, 
medium spiny neurons (MSNs), striatal  PV-expressing 
interneurons and somatosensory pyramidal neurons 
from cortical layers 2/3, 4, 5 and 6 [140]. A recent study 
of 76,755 people with SZ and 243,649 controls reported 
common variant associations at 287 distinct loci and in 
concordance with the Skene et al. study found that vari-
ant genes were significantly enriched in exactly the same 
cell types: hippocampal CA1 pyramidal cells, MSNs, 
somatosensory pyramidal neurons and interneurons 
[156]

This latter study further concluded that there were no 
genetic associations to microglia, astrocytes or any non-
neural tissues, and that the SZ risk genes were primar-
ily implicated in processes related to neuronal function, 
particularly synaptic organisation, differentiation and 
transmission [156]. These studies thereby converge on 
identifying the 4 specific neuronal subtypes mentioned 
above as likely being the main culprits in the develop-
ment of SZ. It should be noted however that certain neu-
ronal subtypes which may not be well-represented in the 
underlying scRNAseq datasets would fail to be identified 
by this method.

While most hiPSC studies performed to date have been 
applying cortical-type neurons, a few have also stud-
ied interneurons, hippocampal neurons and dopamin-
ergic neurons (Table  1). For more relevant insights into 
SZ pathology, it would be relevant to focus future hiPSC 
studies on these latter cell types while also studying the 
MSNs, which have not yet been investigated in hiPSC-
based studies.

Pros and cons of hiPSC‑based models
Using hiPSCs to model SZ has many advantages. One is 
the possibility to model SZ while preserving the genetic 
background of the patient, which provides the opportu-
nity to use these models for studying not only monoge-
netic or CNV forms of SZ, but also the more common 
polygenic forms of the disease. Secondly, hiPSC models 
allow for performing dynamic studies on pathogenic 
pathways and receptors in the context of authentic 
human neurons, thereby avoiding risk of being mis-
led by rodent-specific cellular characteristics. Direct 
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downstream assays can be done using cellular readouts 
such as electrophysiology, morphological examinations 
and transcriptomic and proteomic analyses, which might 
reveal pathology at different time points and in different 
cell types. A particular advantage of performing disease 
modelling in hiPSCs is the ability to recapitulate human 
developmental neurogenesis and neuronal matura-
tion in  vitro, thereby allowing to investigate early time-
points of pathology on a molecular basis. Further, the 
polygenic background of SZ can be modelled in hiPSC, 
but cannot be modelled in animals, as these are usually 
based on maniplations of single genes or CNVs with large 
effect size. On the other hand, there are several limita-
tions of modelling SZ with hiPSCs. In particular, higher 
brain function and complex cognitive and psychosocial 
impairments found as primary manifesting symptoms in 
patients cannot be modelled in cellular systems. Further-
more, hiPSC-derived models are heterogeneous, and may 
at times be hard to reproduce, as they are highly depend-
ent on culturing conditions, cell lines, differentiation 
protocols and freezing–thawing cycles of the cultures. 
In older, less optimised protocols for hiPSC genera-
tion, the donor and cell source used for reprogramming 
could also induce variation in the differentiation capac-
ity of the derived hiPSCs [62]. Moreover, hiPSC cultures 
mainly produce immature fetal-like neurons, which lim-
its proper modelling of adult brain pathology. Therefore, 
it is important to apply optimized and reproducible cell 
differentiation protocols for disease modelling studies, 
and thorough subtype characterization of the cultures 
must be done to establish which cell types are present. 
Additionally, hiPSC disease modelling studies should 
employ stricter quality control measures to standardize 
culture composition, and each study should include equal 
amount of disease and control cell lines. A large meta-
analysis of hiPSC genetic abnormalities reported in more 
than 100 publications identified 738 recurrent genetic 
abnormalities [5]. Therefore, karyotyping and oncogene 
testing should be routinally performed to ensure genetic 
intergrity of the cells.

GWAS data combined with scRNASeq data suggest 
that key neuronal subtypes are implicated in SZ etiol-
ogy [140]. Future hiPSC studies should further investi-
gate these specific subtypes in advanced cellular models 
such as defined regionalized brain organoids or cultures 
with controlled populations of mixed cells such a cortical 
excitatory neurons combined with specific populations 
of interneurons and MSNs to decipher the interactions 
between SZ risk genes and each specific cell types. To 
summarize, identification of key cell types implicated into 
SZ pathology through hiPSC studies can lead to a deeper 
understanding of the molecular mechanisms behind the 

genetic background of SZ and thereby potentially to the 
development of new treatments.
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