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Abstract 

Tauopathies are a category of neurodegenerative diseases characterized by the presence of abnormal tau protein-
containing neurofibrillary tangles (NFTs). NFTs are universally observed in aging, occurring with or without the 
concomitant accumulation of amyloid-beta peptide (Aβ) in plaques that typifies Alzheimer disease (AD), the most 
common tauopathy. Primary age-related tauopathy (PART) is an Aβ-independent process that affects the medial tem‑
poral lobe in both cognitively normal and impaired subjects. Determinants of symptomology in subjects with PART 
are poorly understood and require clinicopathologic correlation; however, classical approaches to staging tau pathol‑
ogy have limited quantitative reproducibility. As such, there is a critical need for unbiased methods to quantitatively 
analyze tau pathology on the histological level. Artificial intelligence (AI)-based convolutional neural networks (CNNs) 
generate highly accurate and precise computer vision assessments of digitized pathology slides, yielding novel 
histology metrics at scale. Here, we performed a retrospective autopsy study of a large cohort (n = 706) of human 
post-mortem brain tissues from normal and cognitively impaired elderly individuals with mild or no Aβ plaques 
(average age of death of 83.1 yr, range 55–110). We utilized a CNN trained to segment NFTs on hippocampus sections 
immunohistochemically stained with antisera recognizing abnormal hyperphosphorylated tau (p-tau), which yielded 
metrics of regional NFT counts, NFT positive pixel density, as well as a novel graph-theory based metric measuring 
the spatial distribution of NFTs. We found that several AI-derived NFT metrics significantly predicted the presence of 
cognitive impairment in both the hippocampus proper and entorhinal cortex (p < 0.0001). When controlling for age, 
AI-derived NFT counts still significantly predicted the presence of cognitive impairment (p = 0.04 in the entorhinal 
cortex; p = 0.04 overall). In contrast, Braak stage did not predict cognitive impairment in either age-adjusted or unad‑
justed models. These findings support the hypothesis that NFT burden correlates with cognitive impairment in PART. 
Furthermore, our analysis strongly suggests that AI-derived metrics of tau pathology provide a powerful tool that can 
deepen our understanding of the role of neurofibrillary degeneration in cognitive impairment.
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Introduction
Neurofibrillary tangles (NFT), inclusions composed 
of toxic hyperphosphorylated forms of the microtu-
bule-associated protein tau (p-tau), are the defining 
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neuropathological feature of a category of neurodegener-
ative diseases termed tauopathies [1, 2]. This large group 
of diseases includes primary age-related tauopathy 
(PART) [3], Alzheimer’s disease (AD) [1], argyrophilic 
grain disease (AGD) [4], frontotemporal lobar degenera-
tion (FTLD) [5], and chronic traumatic encephalopathy 
(CTE) [6]. PART describes a neuropathologic continuum 
observed in the brains of elderly individuals containing 
p-tau pathology in the absence of or with mild amounts 
of amyloid-beta peptide (Aβ). Subjects with a Consor-
tium to Establish a Registry for Alzheimer’s Disease 
(CERAD) neuritic plaque severity score of zero are con-
sidered PART definite while those with a score of one are 
considered PART probable. Clinically, those with PART 
may or may not have cognitive impairment [3, 7], rais-
ing the possibility that other factors (e.g. cerebrovascu-
lar disease) play a role. For these reasons, studying PART 
provides an opportunity to assess age-related neurode-
generative processes that contribute to cognitive impair-
ment. The relationship between cognitive impairment in 
PART and NFT burden is currently not well understood 
[7]. For example, non-impaired individuals can have a 
significant NFT burden, complicating our understand-
ing of the contribution of such brain changes to symp-
tomatology [3, 7]. Conversely, it is well understood that 
NFTs accumulate with age and that individuals who are 
older are more likely to have cognitive decline [8]. Thus, 
the age-independent relationship between NFT burden 
and cognitive impairment in PART remains unclear. One 
approach to improving our understanding of the complex 
relationship between NFT burden, aging, and clinical 
presentation is by leveraging more precise quantification 
of histologic features.

Prior to the introduction of computational-based 
approaches to neuropathology, the Braak tau staging sys-
tem was the most prevalent method of measuring path-
ological p-tau burden in research and remains so in the 
clinical setting [9]. While this method has its strengths, 
it is inherently semi-quantitative, modestly reproduc-
ible, and subject to rater bias, leading to inconsistencies 
between evaluators and institutions [10–14]. Further, the 
Braak staging system was developed for assessment of 
p-tau pathology in the context of AD and has not been 
sufficiently validated in specifically Aβ-negative subjects. 
The Braak staging system is based on hierarchical neu-
roanatomical spread and not the degree of p-tau burden 
in specific brain regions [9, 12]. Despite it being a reflec-
tion of p-tau topographic distribution, it is often used 
as a proxy for assessing the magnitude of neurofibrillary 
degeneration due to lack of convenient alternatives [15–
18]. Consequently, in PART, which minimally advances 
outside of the medial temporal lobe, two cases with 
large differences in NFT burden have the same Braak 

stage. We have found that Braak staging has suboptimal 
clinicopathologic predictive power in Aβ-negative indi-
viduals [19]. Thus, there is a need for better quantitative 
approaches to assessing p-tau burden [20–23].

Recent developments in whole slide digitization allow 
the use of computational approaches to precisely assess 
and quantify neuropathological features. This includes 
measuring histological staining intensity (e.g., positive 
pixels), which we have previously deployed in the context 
of hippocampal tissue sections immunohistochemically-
stained for p-tau [19]. However, this approach fails to 
distinguish between critical structural and morphologi-
cal features that could assist in our understanding of the 
relationship between neuropathology and antemortem 
clinical symptomatology. Furthermore, this method relies 
on human defined pixel color ranges and intensities, and 
is thus vulnerable to biases of variable effects of forma-
lin fixation on tinctorial properties [24]. An alternative 
approach is to utilize deep-learning based models such 
as convolutional neural networks (CNNs). CNNs can 
be trained to generate meaningful histologic metrics on 
whole slide images (WSIs) to assist in feature quantifica-
tion [25], classification [26], or segmentation [27]. There 
is a growing literature of successful applications of CNNs 
and other deep learning methods in neuropathology 
[28–33]. Previous CNN based approaches to neuropa-
thology immunohistochemistry (IHC) have proven suc-
cessful at classifying tauopathies based on p-tau lesions 
[32], detecting and categorizing Aβ lesions [28, 34], and 
calculating alpha-synuclein burden from submandibular 
gland biopsy [33].

Signaevsky et  al. 2019 trained a SegNet [35] seman-
tic segmentation model on WSIs of hippocampal tissue 
immunohistochemically stained for p-tau and annotated 
by expert neuropathologists [29]. The training dataset 
was a set of manual segmentations of NFT’s, excluding 
partial neurites lacking connection to the soma or hill-
ock. The model achieved an F1 score of 0.85 for NFT 
segmentation in PART cases [29]. Unlike state of the art 
computational approaches to assessing p-tau burden, 
Segnet is able to discriminate between the pixels in a WSI 
that specifically represent NFTs from pixels represent-
ing glial-tau inclusions, neuropil threads, background 
tissue, and artifacts [29]. Using this model, it is possible 
to obtain quantitative metrics, such as NFT number and 
size, as well as spatial information about each NFT in the 
image. Here, we leverage this model to extract AI-derived 
metrics of NFT hippocampal neuropathology from a 
cohort of 706 autopsy-confirmed donors with PART. We 
then compared how our AI-derived metrics of NFT bur-
den compared with positive-pixel counts and Braak stag-
ing in predicting cognitive impairment with and without 
correcting for age. We also introduce a novel histologic 
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phenotype of NFT-clustering, which is a graph-theory 
based measure of NFT spatial distribution in the medial 
temporal lobe.

Methods
Patient samples
Scanned digital images of formalin-fixed paraffin embed-
ded (FFPE) tissue sections from the hippocampus as 
well as fresh-frozen tissue from the frontal cortex were 
derived from autopsy brains from a subset of individu-
als from a previously described collection [16]. Clinical 
inclusion criteria included being cognitively normal or 
having a diagnosis of mild cognitive impairment (MCI) or 
dementia with a recorded clinical dementia rating (CDR), 
Mini-Mental State Examination (MMSE), or postmortem 
clinical chart review CDR score [36]. CDR and MMSE 
scores were used to assign subjects into either cognitively 
normal or cognitively impaired groups. Individuals who 
had a CDR score of 0.5 or above or MMSE score below 
26 were considered to be cognitively impaired, while sub-
jects with a CDR score of 0 or MMSE score 26 or above 
were considered cognitively normal. If an individual had 
both MMSE score and CDR score, the most recent score 
was used, and if both scores were given on the same date, 
the CDR score was used.

Comprehensive neuropathological assessments were 
performed at the contributing institutions. Neuropatho-
logical exclusion criteria consisted of other neurode-
generative diseases including AD, Lewy body disease, 
progressive supranuclear palsy (PSP), corticobasal degen-
eration (CBD), chronic traumatic encephalopathy (CTE), 
Pick disease, Guam amyotrophic lateral-sclerosis-parkin-
sonism-dementia, subacute sclerosing panencephalitis, 
globular glial tauopathy, and hippocampal sclerosis. Data 
pertaining to Braak stage, CERAD, Lewy body pathol-
ogy (incidental), cerebrovascular disease, infarcts (vascu-
lar brain injury), microinfarcts, and argyrophilic grains, 
were derived from neuropathologic studies performed 
at respective centers. Incidental Lewy body pathology 
was defined as the presence of rare to sparse Lewy bod-
ies (as assessed at the providing center) in the absence 
of movement disorder. The presence of aging-related 
tau astrogliopathy (ARTAG) was determined on p-tau 
immunohistochemical stains described below.

Immunohistochemistry
Immunohistochemistry and hematoxylin & eosin (H&E) 
stains were performed on 5 μm FFPE sections mounted 
on positively charged slides and dried overnight at room 
temperature. IHC was performed on a Leica Bond III 
automated stainer, according to the manufacturer’s pro-
tocols (Leica Microsystems, Buffalo Grove, IL, USA) 
using antibodies to hyperphosphorylated tau (p-tau, 

AT8, 1:1000, Fisher Scientific, Waltham, MA, USA) and 
Aβ (Aβ, 6E10, 1:1000, Covance, Princeton, NJ, USA). For 
each set of slides, a known severe AD case was included 
as a batch control and compared to ensure uniform stain-
ing across all samples.

Genetic analysis
High-throughput isolation of DNA was performed using 
the MagMAX DNA Multi-Sample Ultra 2.0 Kit on a 
KingFisher Flex robotic DNA isolation system (Ther-
mofisher, Waltham, MA) according to manufacturer pro-
tocol. Briefly, 20–40 mg of fresh frozen brain tissue was 
placed into a deep-well plate and treated with 480 ul of 
Proteinase K mix (Proteinase K, Phosphate Buffered 
Saline [pH 7.4], Binding Enhancer) and incubated over-
night at 65  °C at 800  rpm on a shaking plate. Genomic 
DNA was isolated and purified using magnetic particles. 
DNA quality control was performed using a nanodrop 
spectrophotometer (concentration > 50  ng/ul, 260/280 
ratio 1.7–2.2). Genotyping was performed using single 
nucleotide polymorphism (SNP) microarrays (Infinium 
Global Screening Array v2.4. or the Infinium OmniEx-
press-24, Illumina, San Diego CA). Raw genotype files 
were converted to PLINK-compatible files using Genom-
eStudio software (Illumina, San Diego CA). MAPT hap-
lotype was determined using the rs8070723 H2 tagging 
SNP and APOE genotype was determined using the 
rs429358 rs7412 tagging SNPs. For analyses, the APOE 
status was collapsed into a binary variable of the presence 
or absence of APOE ε4.

NFT burden calculation and slide level annotation
Neurofibrillary tangles (NFT) were semantically seg-
mented from whole slide images (WSI) (Fig. 1a–c) using 
a SegNet model architecture, detailed in Signaevsky 
et al. 2019, which was trained on annotations performed 
by expert neuropathologists on 2221 NFTs from 14 dif-
ferent WSIs. For each slide, the model calculated NFT 
number, size, and location. WSIs were neuroanatomically 
segmented into the hippocampus proper (i.e., dentate 
gyrus, cornu ammonis, and subiculum) and the adjacent 
entorhinal cortex region, which variably includes pos-
terior portions of the parahippocampal gyrus and the 
(trans-)entorhinal region or lingual gyrus (Fig. 1a) using 
Aperio ImageScope software. NFT counts were calcu-
lated for each region as the number of NFTs divided by 
the area of the region. AI-derived NFT positive pixel den-
sity was calculated as the sum of the area of all NFTs in 
a region divided by the area of the region. For standard 
positive pixel calculations, staining was measured in the 
hippocampus proper and entorhinal cortex separately 
and together using a modified version of the Aperio posi-
tive pixel count (Version 9) based on the intensities of the 
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positive control sample in each batch to determine the 
area of immunoreactivity. Positive pixel counts were nor-
malized using the number of positive pixel counts to the 
total area creating a 0–1 p-tau burden scale.

Mean clustering coefficient calculation
To estimate the degree of NFT clustering for a given 
WSI, we represented the spatial distribution of NFTs 
as a network and calculated the mean clustering coeffi-
cient. The center coordinate of each NFT is represented 
as a two-dimensional point cloud fed into a kd-tree and 
queried all points within a given radius, r. Thus, the spa-
tial distribution of NFT for a given WSI is represented as 
a graph where each NFT is a node and its neighbors are 
the other NFTs within a distance of r (Fig. 5a). There is 
no standard metric of inter-NFT distance, therefore we 
created graphs over multiple values of r from 100 (50.66 
microns) to 5000 pixels (2533 microns) in 100 pixel inter-
vals. To correct for the whole slide NFT burden in this 
calculation, all statistics for this metric included the total 
number of NFTs as a nuisance variable.

Statistical analysis
All statistics were carried out via the statsmodels library 
in Python [37]. Data was visualized using the ggplot2 
package in project R [38]. Descriptive statistics were used 
to identify differences between the cognitively normal 
and cognitively impaired PART groups for clinical, path-
ological, and genetic variables. Differences were detected 
using chi-square. A t-test was performed to determine if 
age differed significantly between normal and cognitively 

impaired groups. A multivariable model was created 
to determine to what extent measures of NFT burden 
(Braak NFT stage, positive pixel count, and AI-based) 
predict cognitive impairment in PART. Analyses evalu-
ating associations between NFT burden and individual 
sub-measures of cognitive impairment utilized t-test for 
clinical diagnosis, Spearman rank-order for CDR, and 
Pearson correlation for MMSE. Age-adjusted models 
included age as a parameter. All statistical analyses using 
measures of NFT burden were corrected for multiple 
comparisons via false discovery rate.

Results
Dataset demographics, neuropathologic findings, 
and genetics
A total of 706 subjects were included in this study 
(Table  1). The overall mean age was 85.15 with a range 
of 55 to 110  years. Of these, 362 subjects (mean age 
82.96, 168 male, 194 female) had no cognitive impair-
ment (NCI) and 344 subjects (mean age 87.45, 161 male, 
183 female) had some degree of cognitive impairment 
(CI). The CI group was significantly older than the NCI 
group (p < 0.0001). In our genetic analysis, we found no 
significant interaction between cognitive impairment and 
presence of ε2 APOE allele, ε4 APOE allele, or MAPT 
haplotype distribution.

Neuropathologic case review found 166 subjects 
(26.9%) exhibited hippocampal age-related tau astro-
gliopathy (ARTAG). Comparing between the groups, we 
found CI had significantly higher rates of ARTAG than 
NCI (31.27% vs 22.58%, p = 0.019). Considering that both 

Fig. 1  Detection of neurofibrillary tangles (NFT) in phospho-tau (AT8) immunohistochemically stained whole slide images (WSI). a Example of a 
hippocampal WSI immunohistochemically stained for phosphorylated-tau (AT8). The hippocampus proper (blue) and entorhinal region (red) were 
manually segmented. b High-power (20x) representative image of the hippocampal CA2 subfield showing p-tau positive neurofibrillary tangles. 
c Corresponding output of above image passed through semantic segmentation model that identifies NFT. Each pixel value corresponds to the 
probability that it represents an NFT
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ARTAG and CI are more prevalent in the elderly, we 
found after age adjustment via Cochran-Mantel–Haen-
szel method with two-level stratification there was no 
longer a significant association between ARTAG and CI 
(pooled OR: 1.42, p = 0.058). There was no significant 
statistical difference in Braak NFT stage scores between 
the two groups (NCI: mean 2.35, stdev 1.30; CI: mean 
2.46, stdev 1.31; two tailed t-test, p = 0.27; chi-square 
test, p = 0.43). There were no significant differences in the 
distribution of CERAD score between the groups (NCI: 
mean 0.15, stdev 0.37; CI: mean 0.19, stdev 0.40; chi-
square test, p = 0.48).

Tau burden
In our main unadjusted analysis of tau burden as a pre-
dictor of cognitive status (Table  2), we found that the 
Braak NFT stage was not a significant predictor of cog-
nitive impairment (OR 1.09, p = 0.2769). However, both 
AI-detected NFT counts and AI-detected NFT posi-
tive pixel density were significant predictors of cognitive 
impairment in the entorhinal cortex (counts, OR 1.38, 

p = 0.0001; pixels, OR 1.32, p < 0.0001), hippocampus 
(counts, OR 1.40, p = 0.0001; pixels, OR 1.35, p < 0.0001), 
and combined regions (counts, OR 1.45, p < 0.0001; pix-
els, OR 1.40, p < 0.0001) (Fig.  2). Standard p-tau immu-
noreactivity positive pixel count was also a significant 
predictor of cognitive impairment in the entorhinal 
cortex (OR 1.29, p = 0.0039), hippocampus (OR 1.42, 
p = 0.0002), and combined regions (OR 1.39, p = 0.0002).

Similarly, in our age-adjusted analysis of tau burden 
as a predictor of cognitive status (Table  2), we found 
that the Braak NFT stage was not a significant predic-
tor of cognitive impairment (OR 0.89, p = 0.1603). Age-
corrected AI-detected NFT counts were a significant 
predictor of cognitive impairment in the entorhinal 
cortex (OR 1.15, p = 0.0373) and combined regions (OR 
1.28, p = 0.0373), but not the hippocampus (OR 1.22, 
p = 0.0595) (Fig.  3D). In contrast, age-corrected AI-
detected NFT positive pixel density and age-corrected 
standard positive pixel count were not a significant 
predictor of cognitive impairment in the entorhinal 
cortex (AI-pixel, OR 1.19, p = 0.0666; standard pixel, 

Table 1  Summary of cohort data

Group comparisons are conducted via chi-squared test *except for average age at death which is a t-test. Bold p-values indicate p < 0.05

Overall Cognitive status p

Impaired Normal

Demographics

Total (M/F) 706 (329/377) 344 (161/183) 362 (168/194) 0.9766

Average age at death (standard deviation) 85.15 (10.27) 87.45 (8.91) 82.96 (10.98)  < 0.0001*
Neuropathologic data

Presence of hippocampal ARTAG (%) 166 (26.90%) 96 (31.27%) 70 (22.58%) 0.0191
Braak NFT Stage 0.4282

 0 64 (9.07%) 33 (9.59%) 31 (8.56%)

 I 111 (15.72%) 46 (13.37%) 65 (17.96%)

 II 189 (26.77%) 89 (25.87%) 100 (27.62%)

 III 186 (26.35%) 93 (27.03%) 93 (25.69%)

 IV 126 (17.85%) 69 (20.06%) 57 (15.75%)

 V 29 (4.11%) 13 (3.78%) 16 (4.42%)

CERAD Score 0.4829

 C0 565 (80.03%) 265 (77.03%) 300 (82.87%)

 C1 111 (15.72%) 59 (17.15%) 52 (14.36%)

Genetics Data

Presence of E2 APOE allele 22 (22.45%) 12 (30.77%) 10 (16.95%) 0.1746

Presence of E4 APOE allele 15 (15.31%) 3 (7.69%) 12 (20.34%) 0.1569

APOE Genotype 0.3225

 APOE2,2 3 (3.06%) 2 (5.13%) 1 (1.69%)

 APOE2,3 17 (17.35%) 9 (23.08%) 8 (13.56%)

 APOE2,4 2 (2.04%) 1 (2.56%) 1 (1.69%)

 APOE3,3 63 (64.29%) 25 (64.10%) 38 (64.41%)

 APOE3,4 10 (10.20%) 2 (5.13%) 8 (13.56%)

 APOE4,4 3 (3.06%) 0 (0%) 3 (5.08%)
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OR 1.15, p = 0.1467), hippocampus (AI-pixel, OR 
1.17, p = 0.0847; standard pixel,OR 1.01, p = 0.0666), 
or combined regions (AI-pixel, OR 1.20, p = 0.0598; 
standard pixel, OR 1.21, p = 0.0678). When comparing 
AI-detected NFT counts with age (Fig. 3 a-c), we found 
a significant correlation between NFT counts and age 
in the entorhinal cortex (r = 0.28, p < 0.0001), hip-
pocampus (r = 0.33, p < 0.0001), and combined regions 
(r = 0.34, p < 0.0001).

Detailed breakdown of associations between regional 
AI-detected NFT counts and each individual clini-
cal variable can be found in Fig.  4. There was a sig-
nificantly increased (p < 0.001) NFT in cases with a 
positive clinical diagnosis of cognitive impairment vs 
those without in all regions and combined. There was 
a modest yet statistically significant positive correla-
tion between NFT counts and CDR score in the hip-
pocampus (⍴ = 0.13, p = 0.02) and combined regions 
(⍴ = 0.12, p = 0.04) but insignificant in the entorhi-
nal cortex (⍴ = 0.09, p = 0.14). There was a significant 
negative correlation between NFT counts and MMSE 
score in the entorhinal cortex (r = − 0.16, p = 0.01), hip-
pocampus (r = − 0.17, p = 0.01), and combined regions 
(r = − 0.18, p = 0.003).

NFT Spatial Clustering Analysis
In our analysis of NFT clustering, we found that degree 
of NFT clustering significantly predicted cognitive 
impairment over a range of distance threshold values 
(r) (Fig.  5 b), with a maximum odds ratio (OR 1.27, 
p = 0.0039) at r = 800 px (405.28 microns) (Table  2). 
We found NFT clustering significantly predicted cog-
nitive impairment across the range of distance thresh-
old values, r, between 300 and 1200 pixels (151.98 
microns—607.92 microns) (Fig.  6). With age adjust-
ment, mean clustering coefficient did not significantly 

Table 2  Odds of being cognitively impaired at death based on p-tau metric

Statistics were corrected for multiple comparisons using false discovery rate. Bold p-values indicate p < 0.05

Measure of p-tau burden Unadjusted Age adjusted

OR 95% CI p OR 95% CI p

Classical staging

Braak NFT stage 1.09 0.94–1.26 0.2769 0.89 0.75–1.05 0.1603

Positive pixel count

Entorhinal Cortex 1.29 1.09–1.52 0.0039 1.15 0.96–1.37 0.1467

Hippocampus 1.42 1.20–1.69 0.0002 1.01 1.01–1.46 0.0666

Combined 1.39 1.17–1.65 0.0002 1.21 1.01–1.45 0.0678

AI-detected NFT counts

Entorhinal Cortex 1.38 1.18–1.61 0.0001 1.25 1.06–1.47 0.0373
Hippocampus 1.40 1.20–1.64 0.0001 1.22 1.04–1.44 0.0595

Combined 1.45 1.24–1.70  < 0.0001 1.28 1.08–1.51 0.0373
AI-derived NFT positive pixel density

Entorhinal Cortex 1.32 1.13–1.54  < 0.0001 1.19 1.01–1.39 0.0666

Hippocampus 1.35 1.15–1.58  < 0.0001 1.17 0.99–1.38 0.0847

Combined 1.40 1.19–1.63  < 0.0001 1.20 1.03–1.43 0.0598

Network based metric

Average clustering coefficient 1.27 1.08–1.49 0.0039 1.16 0.98–1.35 0.1162

Fig. 2  Increased neurofibrillary tangle (NFT) counts in cognitively 
impaired subjects. NFT densities are shown split by cognitive status, 
cognitively impaired (CI) and no cognitive impairment (NCI). NFT 
counts of the entorhinal cortex, hippocampus, and both regions 
combined are presented. Triple asterisks (***) denote p < 0.0001 based 
on a two-sample t-test between groups. Two-way analysis of variance 
yielded a F-statistic of 58.99
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predict cognitive impairment (OR 1.16, p = 0.1162) 
(Table 2).

Discussion
Machine learning has emerged as a rigorous and repro-
ducible quantitative approach for assessing neurodegen-
erative lesions in human autopsy brain tissues, including 
neurofibrillary tangles and Aβ plaques, key components 
of AD, aging, and related diseases. It is unclear, how-
ever, whether these AI-derived traits are clinically rel-
evant. Improving our ability to assess clinical correlates 
of neuropathological features, which remain modest even 
with widely deployed approaches [39], is an important 
priority. Here we show, in an autopsy cohort of 706 sub-
jects meeting the neuropathological criteria for PART, 
that AI-derived measurement of NFT burden, derived 
from digitized WSIs of the hippocampus immunohisto-
chemically stained for p-tau in the medial temporal lobe, 

significantly predicts antemortem cognitive impairment. 
This AI classifier greatly outperformed Braak staging, 
the gold standard approach of NFT burden measure-
ment, which did not predict cognitive impairment in this 
selected cohort. This supports our previous findings that 
widely deployed approaches may not fully capture clini-
cally relevant disease burden in brains with PART [19].

While previous digital pathology studies have found 
correlations between p-tau burden and cognitive impair-
ment [8, 18, 19, 40, 41], this is the first study, to our 
knowledge, to perform clinicopathologic correlations 
using AI-assisted NFT counts in a population of non-AD 
or related disease patients. Previous work using positive 
pixel counts in p-tau immunohistochemically stained 
digitized sections have provided a reliable estimate of 
p-tau burden [19, 42–45], however NFT segmentation 
via convolutional neural networks (CNNs) gives highly 
sensitive and specific measurements of NFT burden 

Fig. 3  AI-detected NFT counts by region with respect to age and cognitive status. a–c Relationship between NFT counts and age, grouped by 
cognitive status in Entorhinal Cortex (a), Hippocampus (b), and combined (c). Pearson correlation values between age and region’s NFT density 
are shown with associated p value. d Age adjusted NFT density group difference by region. Asterisks denote p < 0.05 based on a two-sample t-test 
between groups. Two-way analysis of variance yielded a F-statistic of 4.23
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which are unbiased by neuropil threads or other tau-
based pathologic structures [29]. In addition, AI-based 
CNNs generate novel metrics describing the size, mor-
phology and spatial distribution of NFTs. Notably, of the 
computational measures of p-tau burden, we found that 
AI-derived metrics of NFT counts were the only meas-
ures to detect an age-independent relationship between 
NFT burden and cognitive impairment. Thus, we con-
clude that AI-derived measures of NFT burden are a val-
uable and precise histologic tool that can be implemented 
at scale to assess subtle relationships which may underlie 
clinically relevant signals without requiring the labor of 
manually counting NFTs on hundreds of WSIs. In sum-
mary, studies like this which leverage AI-derived histom-
ics assist in demonstrating the feasibility of deploying 
such metrics in clinicopathologic correlation studies in 
neuropathology.

In addition to rapidly quantifying tangle burden on 
a large dataset of donors, we also introduced a novel 
metric of NFT mean clustering coefficient which was 
able to quantify the spatial density of NFTs in a given 
sample. We found that NFT mean clustering coefficient 

reliably predicted cognitive impairment in our popu-
lation of PART patients. This metric provides a novel 
insight into the distribution of p-tau in a given section, 
a measure which so far has only been indirectly approxi-
mated [46]. We hypothesize the utility of this metric can 
assist in predicting cognitive impairment in tauopathies 
which are more focally distributed such as CTE [44, 46]. 
This approach to measuring disease burden has the theo-
retical potential to capture mechanisms of p-tau spread 
through a given region, which is currently under inves-
tigation by several other groups [47–54]. Previous work 
has shown the extent to which graph-based spatial meas-
ures can estimate disease burden in histopathology [55]. 
Of note, Signaevsky et  al. 2022 found that graph-based 
metrics of spatial distribution of αα-synuclein lesions had 
the highest predictive value in diagnosing Parkinson’s 
disease over all other measures of α-synuclein burden 
[33]. Future studies will seek to leverage several more AI-
generated features of neurodegeneration, including but 
not limited to tangle shape and morphology, white mat-
ter involvement, and other pathological classifiers.

Fig. 4  Relationship between NFT counts by region and each individual cognitive variable. In this analysis we used a loose label of cognitive 
impairment as a composite metric based on MMSE, CDR, or documented clinical history of cognitive impairment. This figure shows the 
relationships between AI-detected NFT counts by region and each individual clinical variable. (Left column) Two-sample t-tests were performed 
for documented clinical history of cognitive impairment. (Middle column) Spearman rho correlation was performed between NFT count and CDR 
score. (Right column) Pearson r correlation was performed between NFT count and MMSE
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While our study demonstrated a strong correlation 
between NFT burden and cognitive impairment, there 
are notable limitations. We designated cognitive status 
using a weak threshold based on limited available clini-
cal information, including three different measures of 
cognitive impairment [30]. Correlative studies within 
prospective cohorts with antemortem neuropsychologi-
cal assessments would allow for the potential to analyze 
differential relationships between anatomic subregional 
vulnerability and specific cognitive domain deficits. Tel-
yan et al. 2020 found longitudinal decline within specific 
cognitive domains in a population of PART patients [56], 
however it remains unknown what histopathologic fea-
tures underlie deficits in each domain. Correlative studies 
within prospective cohorts with antemortem neuropsy-
chological assessments would allow for the potential to 
analyze differential relationships between anatomic sub-
regional vulnerability and specific cognitive domain defi-
cits. Further, the timeframe under which patients’ clinical 
data were obtained before death was variable, and some 
may have progressed in this time window. Additionally, 

Fig. 5  NFT position as a geometric network and subsequent graph metrics. a A representation of NFT position as a geometric network. Each NFT 
is represented as a node in a unidirectional binary graph, where an edge exists between two nodes if the Euclidean distance between them is less 
than some value r. In this figure r = 250 μm. b Group comparison of non-cognitively impaired (NCI) vs cognitively impaired (CI) mean clustering 
coefficient. Asterisk denotes p < 0.05. Two-sample t-test between groups yielded a t-statistic of  − 2.97 and p = 0.0031. c: Example of hippocampal 
whole slide image with high mean clustering coefficient (0.75). d Example of hippocampal whole slide image with low mean clustering coefficient 
(0.47)

Fig. 6  Odds ratio of cognitive impairment on mean NFT clustering 
coefficient for a range of given distance thresholds. Since the cutoff 
of r in our mean NFT clustering coefficient metric has no ground 
truth, we tested it across a large range of values. Red lines bounding 
shaded areas demark the upper and lower bounds of the 95% 
confidence interval. Mean NFT clustering coefficient significantly 
predicts cognitive impairment for distance thresholds between 300 
px (151.98 microns) and 1200 px (607.92 microns)
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the cohort was not population based. For all these rea-
sons, our clinical classification is inherently noisy. While 
this approach has modest sensitivity for cognitive impair-
ment, we nevertheless found that our measures of NFT 
burden significantly correlated with each individual cog-
nitive measure independently, demonstrating the utility 
of this AI-derived metric to detect a signal despite a high 
degree of noise. Another limitation is the use of coarse 
neuroanatomical annotations which did not follow sub-
region boundaries with known selective vulnerability 
profiles in PART [57, 58]. Follow up studies are ongoing 
to establish protocols for detailed hippocampal subregion 
annotations for future analysis, as well as leverage subre-
gion specific p-tau burden metrics in clinicopathologic, 
genomic, and transcriptomic correlative studies. Further, 
this study did not account for the contributions of certain 
pathologic features (e.g., TDP-43, cerebrovascular dis-
ease, degree of neuronal loss) relevant to both cognitive 
impairment and the degree of neurofibrillary degenera-
tion [19, 30, 59, 60]. Thus, future studies are necessary to 
measure the extent to which our observed associations 
would remain after accounting for their confounding 
influence. While this study establishes clinicopathologic 
correlations between AI-derived measures of NFT bur-
den in a population of PART patients, further studies are 
required to validate these findings in other populations 
and tauopathies such as AD, FTLD, and CTE.

In conclusion, here we demonstrate that our AI-
derived measures of neurofibrillary degeneration offer a 
rapid, robust, and reproducible approach to identifying 
histopathological features which predict antemortem 
cognitive impairment independently of age. These results 
support our prior work showing a strong correlation 
between cognitive impairment and the degree of NFT 
pathology using positive-pixel counts in the medial tem-
poral lobe in PART. Further, this study demonstrates that 
AI-derived metrics have the potential to provide novel 
histologic signatures for clinicopathologic correlation in 
future studies.
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