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Abstract 

Frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) is a neurodegenerative disease primarily 
affecting the frontal and/or temporal cortices. However, a growing body of evidence suggests that the cerebellum 
contributes to biochemical, cognitive, and behavioral changes in FTLD-TDP. To evaluate cerebellar TDP-43 expres‑
sion and function in FTLD-TDP, we analyzed TDP-43 protein levels and the splicing of a TDP-43 target, STMN2, in the 
cerebellum of 95 FTLD-TDP cases and 25 non-neurological disease controls. Soluble TDP-43 was decreased in the 
cerebellum of FTLD-TDP cases but a concomitant increase in insoluble TDP-43 was not seen. Truncated STMN2 tran‑
scripts, an indicator of TDP-43 dysfunction, were elevated in the cerebellum of FTLD-TDP cases and inversely associ‑
ated with TDP-43 levels. Additionally, lower cerebellar TDP-43 associated with a younger age at disease onset. We 
provide evidence of TDP-43 loss of function in the cerebellum in FTLD-TDP, supporting further investigation into this 
understudied brain region.
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Introduction
Frontotemporal dementia (FTD) is an umbrella term for 
syndromes presenting with deficits in behavior, execu-
tive function, and language [1, 2]. Approximately 50% of 
cases with frontotemporal lobar degeneration (FTLD), 
the neuropathological diagnosis of FTD, are character-
ized by cytoplasmic inclusions containing TAR DNA 
binding protein 43 (TDP-43) in neurons and glia, with a 
concomitant loss of nuclear TDP-43 [3, 4]. Consequently, 
TDP-43 loss of function (due to its nuclear depletion) 
and/or toxic gains of function caused by aggregated cyto-
plasmic TDP-43 are believed to underlie the neuronal 

susceptibility and degeneration observed in the frontal 
and temporal cortices in FTLD with TDP-43 pathology 
(FTLD-TDP) [5].

The cerebellum has historically been underappreciated 
in FTLD-TDP given the absence of TDP-43 inclusions 
and significant neurodegeneration in this neuroanatomi-
cal region. However, functional imaging studies show 
cerebellar involvement in cognitive abilities such as 
working memory, emotion, language, and attention pro-
cessing [6, 7]. In addition, extensive connections exist 
between the cerebellum and cerebrum, including the 
frontal and temporal lobes [8–10]. The discovery of a 
hexanucleotide repeat expansion in the chromosome 9 
open reading frame 72 (C9orf72) gene as the most com-
mon genetic cause of FTD and amyotrophic lateral scle-
rosis (ALS)—often referred to as c9FTD/ALS—stoked 
interest in the cerebellum. The cerebellum of c9FTD/
ALS cases is marked by robust dipeptide-repeat protein 
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pathology and foci of repeat RNA transcripts [11–14]. 
Reports that a smaller repeat expansion size in the cer-
ebellum offers a survival advantage [15, 16], and that cer-
ebellar poly(GP) dipeptide repeat protein levels associate 
with cognitive impairment [14] further support cerebel-
lar involvement in c9FTD/ALS. Moreover, studies uncov-
ered cerebellar transcriptome alterations [17, 18], and 
progressive atrophy in cerebellar subregions associated 
with cognitive and motor symptoms in FTLD-TDP cases 
with or without a C9orf72 repeat expansion [19–24]. In 
aggregate, these data implicate cerebellar anomalies in 
FTLD-TDP, beyond direct C9orf72-associated pathology, 
leaving the causes of cerebellar dysfunction in FTLD-
TDP unanswered.

Previous studies discovered that TDP-43 suppresses 
the inclusion of cryptic exons in numerous transcripts 
[25], including STMN2 [26, 27]. We recently demon-
strated that a truncated variant of STMN2 (tSTMN2), 
generated by the aberrant inclusion of a stop-codon con-
taining cryptic exon, is detected in the central nervous 
system of ALS and FTLD cases with TDP-43 proteinopa-
thy [28]. Intriguingly, in analyses of RNA sequencing 
datasets, tSTMN2 was also detected in the cerebellum of 
some ALS and ALS/FTLD cases [28], suggesting a loss of 
TDP-43 splicing activity in this region.

Given the mounting evidence implicating cerebellar 
anomalies in FTLD-TDP, we evaluated TDP-43 splicing 
function and expression in the cerebellum of a cohort of 
well-characterized FTLD-TDP cases.

Materials and methods
Study design
Post-mortem brain tissue from individuals with neuro-
pathologically confirmed FTLD-TDP and those without 
neuropathological features were provided by the Mayo 
Clinic Florida Brain Bank. All participants or their fam-
ily members gave written informed consent, and all 
protocols were approved by the Mayo Clinic Institution 
Review Board and Ethics Committee. Sample size was 
determined based on the availability of tissue in our brain 
bank. A description of patient characteristics is provided 
Table 1.

RNA extraction and NanoString analysis in post‑mortem 
brain tissue
RNA was extracted from postmortem frozen cerebel-
lum tissue using the RNAeasy Plus Mini Kit (Qiagen) per 
the manufacturer’s instructions. RIN was assessed using 
an Agilent 2100 bioanalyzer (Agilent Technologies), and 
only samples with an RNA integrity number (RIN, ≥ 7.0) 
were used. Levels of the tSTMN2 transcript were deter-
mined using 250 ng of RNA using the NanoString PlexSet 
platform. Data was analyzed using transcript nSolver4.0 

software (NanoString Technologies) and normalized 
to hypoxanthine phosphoribosyltransferase (HPRT1), a 
housekeeping gene we have previously used to normal-
ized transcript levels [28]. Probe sequences are as fol-
lows: tSTMN2 5’-AGA​AGA​CCT​TCG​AGA​GAA​AGG​
TAG​AAA​ATA​AGA​ATT​TGG​CTC​TCT​GTG​TGA​GCA​
TGT​GTG​CGT​GTG​TGC​GAG​AGA​GAG​AGA​CAG​ACA​
GCC​TGC-3’, and HPRT1 (NM_000194.3), 5’- CTA​TGA​
CTG​TAG​ATT​TTA​TCA​GAC​TGA​AGA​GCT​ATT​GTA​
ATG​ACC​AGT​CAA​CAG​GGG​ACA​TAA​AAG​TAA​TTG​
GTG​GAG​ATG​ATC​TCT​CAA​CTT​TAA​CTGG-3’.

Protein extraction and immunoblotting
Radioimmunoprecipitation assay buffer (RIPA)-soluble 
and urea-soluble protein fractions were obtained from 
postmortem cerebellar tissue, as previously described 
[14]. Approximately 50  mg of tissue were homogenized 
in cold RIPA buffer (25 mM Tris–HCl pH 7.6, 150 mM 
NaCl, 1% sodium deoxycholate, 1% Nonidet P-40, 0.1% 
sodium dodecyl sulfate, protease and phosphatase inhibi-
tors) and then sonicated on ice. The homogenates were 
centrifuged at 100,000 × g for 30  min at 4  °C and the 
supernatant was collected. The pellets were resuspended 
in RIPA buffer and sonicated. The samples were then 
centrifuged again and extracted using 7  M urea, soni-
cated, and centrifuged at 100,000 × g for 30 min at room 

Table 1  Characteristics of controls and FTLD-TDP cases

The sample median (minimum, maximum) is given for continuous variables. 
Information was unavailable regarding age at disease onset and disease 
duration for 10 FTLD-TDP cases; age at death for 1 FTLD-TDP case; TDP-43 
subtype for 4 FTLD-TDP cases. A Chi-squared test was used to test for differences 
in sexa, and a Mann–Whitney test was used to test for differences in age at death 
and RINb between control and FTLD-TDP groups. P-values < 0.05 are considered 
statistically significant and are marked in bold

Variable Controls N = 25 FTLD-TDP N = 95 P value

Sex 0.6644a

 Male 13 (52.0%) 54 (56.8%)

 Female 12 (48.0%) 41 (43.2%)

Age at disease onset 
(years)

NA 63.6 (44.0, 83.0)

Disease duration (years) NA 8.0 (2.0, 25)

Age at death (years) 81.9 (56.6, 99.0) 73.1 (52.4, 90.4) 0.0058b

Genotype

 No mutation NA 33 (34.7%)

 C9orf72 repeat 
expansion

NA 29 (30.6%)

 GRN mutation NA 33 (34.7%)

TDP-43 subtype

 A NA 68 (71.6%)

 B NA 8 (8.4%)

 C NA 15 (15.7%)

 RIN 9.7 (7.1, 10) 9.4 (7.2, 10.0) 0.0375b
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temperature. Protein concentrations of the RIPA and 
urea-soluble fractions were determined by Bicinchoninic 
acid assay (BCA) assay or Bradford assay, respectively. 
RIPA or urea-soluble protein was diluted in 2X Tris–gly-
cine SDS sample buffer (Life Technologies) and reduc-
ing agent (5% beta-mercaptoethanol, Sigma Aldrich) 
and heat-denatured for 5 min at 95 °C. Samples were run 
by sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis (SDS-PAGE) on 4–20% Tris–Glycine gels (Life 
Technologies) and transferred to Polyvinylidene (PVDF) 
membrane (Millipore). Following transfer, membranes 
were blocked in 5% non-fat dry milk in Tris buffered 
saline with Triton (TBS-T, 100  mM Tris–HCl pH 7.5, 
140  mM NaCl, 0.1% Triton X-100) and incubated over-
night at 4  °C with a rabbit polyclonal anti-TDP-43 anti-
body (1:1500, 12892-1-AP, ProteinTech) followed by a 
mouse monoclonal anti-glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) antibody (1:30,000, H86504M, 
Meridian Life Sciences). Membranes were then incubated 
with horseradish peroxidase (HRP)-conjugated second-
ary antibodies (1:5000; Jackson ImmunoResearch) and 
proteins of interest were detected by Enhanced chemi-
luminescence (ECL, PerkinElmer). Quantitative densi-
tometry on soluble and insoluble protein fractions was 
performed using Image J and TDP-43 in RIPA-soluble 
protein fractions were normalized to GAPDH expression.

Statistics
All statistical analyses were done using GraphPad Prism 
9 (GraphPad Software). For each figure the type of analy-
sis used, and the number of subjects is indicated in the 
figure and/or legend.

To compare tSTMN2 RNA and TDP-43 protein in the 
cerebellum between controls and FTLD-TDP cases, all 
FTLD-TDP cases combined and the three genotypes sep-
arately, were analyzed with single-variable (unadjusted) 
and multivariable linear regression models (adjusted). 
Multivariable models were adjusted for age at death, sex 
and RIN for tSTMN2 RNA, and for age at death and sex 
for TDP-43 protein. Both tSTMN2 RNA and TDP-43 
protein were analyzed on the base 2 logarithmic scale 
due to their skewed distributions. The regression coeffi-
cients (β) and 95% confidence intervals (CIs) were esti-
mated and interpreted as the difference in the means, 
bases on the 2 logarithmic scale, between all FTLD-TDP 
cases combined or the individual genotypes and the con-
trols (reference group). P values less than 0.0125 were 
considered statistically significant after adjusting for the 
four different statistical test that were performed for 
all FTLD-TDP and the separate FTLD-TDP groups (no 
mutation, C9orf72 mutation carriers, GRN mutation car-
riers) vs. controls.

For associations between TDP-43 protein levels and 
tSTMN2 RNA, age at disease onset, or disease duration 
after onset were evaluated in FTLD-TDP cases using sin-
gle-variable and multivariable linear regression models. 
Both TDP-43 protein levels and tSTMN2 RNA were ana-
lyzed using the base 2 logarithmic scale. The multivaria-
ble model examining TDP-43 protein levels and tSTMN2 
RNA was adjusted for age, sex and genotype. The model 
evaluating TDP-43 and age at disease onset was adjusted 
for sex and genotype, and the model assessing associa-
tions between TDP-43 protein and disease duration was 
adjusted for sex, age at onset and genotype. P values less 
than 0.0167 were considered statistically significant after 
adjusting for multiple comparisons.

To compare levels of soluble (RIPA-soluble) or insolu-
ble (urea-soluble) TDP-43 protein a Mann–Whitney test 
was used.

Results
Truncated STMN2 RNA is elevated in the cerebellum 
of FTLD‑TDP cases
To evaluate cerebellar STMN2 missplicing, we used the 
NanoString PlexSet platform to measure tSTMN2 RNA 
in 95 FTLD-TDP cases ([29] with no known FTD-caus-
ing mutation, 29 with a C9orf72 repeat expansion and 
33 with a mutation in progranulin (GRN)) and in 25 
cognitively normal controls pathologically-confirmed 
to have no TDP-43 pathology (see Table  1). Our con-
trol and FTLD-TDP groups were sex-matched, having 
similar ratios of males to females. However, individu-
als in our control group were significantly older and had 
higher RNA integrity numbers (RIN, Table  1). We used 
a single-variable linear regression model, referred to as 
the unadjusted analysis, to first determine trends in the 
unadjusted data and then a multivariable linear regres-
sion model, referred to as the adjusted model, to control 
for possible confounding factors arising from differences 
between control and FTLD-TDP groups. In unadjusted 
analysis [β:0.9352, 95% confidence interval (CI): 0.5235 
to 1.347, P < 0.0001] and in analysis adjusted for age, sex 
and RIN (β:0.7475, 95% CI: 0.3797 to 1.115, P = 0.0001), 
cerebellar tSTMN2 RNA was significantly higher in all 
FTLD-TDP cases combined or in each separate FTLD-
TDP group when compared to controls (Fig. 1A, Table 2).

TDP‑43 protein is reduced in the cerebellum in FTLD‑TDP 
cases and associates with elevated truncated STMN2 RNA 
levels
To test the hypothesis that the presence of tSTMN2 RNA 
in the cerebellum was caused by suboptimal TDP-43 
levels, we examined detergent-soluble TDP-43 protein 
levels in the cerebellum by Western blot. Compared to 
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controls, a significant or nominally significant decrease in 
cerebellar TDP-43 was seen in FTLD-TDP cases in unad-
justed analysis (β: − 0.4087, 95% CI: − 0.6325 to − 0.1849, 
P = 0.0004, Fig.  1B, Table  2) and analysis adjusted for 
age and sex (β: − 0.2701, 95% CI: − 0.4850 to − 0.05514, 
P = 0.0142, Table  2), respectively. This decrease in solu-
ble TDP-43 appeared to be largely driven by C9orf72 

and GRN mutation carriers (Fig.  1B, Table  2). Further 
confirming the relationship between cerebellar TDP-43 
protein and tSTMN2 RNA in FTLD-TDP cases, we found 
that lower soluble TDP-43 significantly associated with 
higher tSTMN2 in both unadjusted analysis (β: − 0.2604, 
95% CI: − 0.3621 to − 0.1588, P < 0.0001, Fig. 1C, Table 3) 

Fig. 1  Truncated STMN2 RNA is elevated, and soluble TDP-43 protein is decreased in the cerebellum of FTLD-TDP cases. A, B tSTMN2 RNA and 
TDP-43 protein levels were measured in FTLD-TDP cases (n = 95) and non-neurological disease controls (n = 25). A tSTMN2 RNA levels, as measured 
by NanoString PlexSet platform, are significantly elevated in FTLD-TDP cases. B Soluble TDP-43 protein levels, as quantified from Western blot, are 
significantly decreased in FTLD-TDP cases. Horizontal bars represent mean 95% confidence intervals (95% CI). P-values and 95% CI from unadjusted 
linear regression models are shown. Note values for linear regression models adjusted for age, sex and RIN are shown in Table 2. C Associations of 
TDP-43 protein levels with tSTMN2 RNA levels were examined in FTLD-TDP cases. Regression coefficient (β), 95% CI and P-values from unadjusted 
linear regression models are shown. Values for linear regression models adjusted for age, sex and genotype are shown in Table 3. D, E TDP-43 
protein levels in the cerebellum of FTLD-TDP cases (n = 8) and controls (n = 10) were measured by western blot in the RIPA-soluble (D) and 
RIPA-insoluble (E) fractions. A representative western-blot (above) and densiometric quantification (below) are presented. Data are presented as 
mean + / − SEM. P values shown resulting from Mann Whitney test
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and analysis adjusted for age, sex and RIN (β: − 0.2078, 
95% CI: − 0.3136 to − 0.1021, P = 0.0002, Table 3).

To determine whether the decrease in soluble TDP-43 
in FTLD-TDP cases was caused by its redistribution to 
the detergent-insoluble (RIPA-insoluble, urea-soluble) 
fraction, we measured cerebellar TDP-43 in soluble and 
insoluble fractions for a subset of FTLD-TDP cases and 
controls. More specifically, we selected the FTLD-TDP 
cases showing the most drastic depletion of soluble TDP-
43 (Fig.  1D) as they would likely best reveal any appre-
ciable shift of TDP-43 from the soluble to the insoluble 
fraction. As expected, based on our sample selection, sol-
uble TDP-43 was significantly lower in FTLD-TDP cases 
than in controls; however, no concomitant rise in insolu-
ble TDP-43 was observed (Fig. 1D, E). The lower TDP-43 

levels suggest that overall cerebellar TDP-43 expression 
is decreased in FTLD-TDP.

Lower levels of cerebellar TDP‑43 associate with an earlier 
age at disease onset
To evaluate the clinical significance of cerebellar TDP-
43 depletion and elevated tSTMN2 RNA production, 
we assessed whether detergent soluble cerebellar TDP-
43 or tSTMN2 RNA levels associate with age of disease 
onset or disease duration in FTLD-TDP cases. Lower 
cerebellar TDP-43 associated with a younger age at dis-
ease onset in both unadjusted analysis (β: 0.02175, 95% 
CI: 0.009906 to 0.03359, P = 0.0005, Fig.  2A, Table  3), 
and analysis adjusted for sex and genotype (β: 0.01624. 
95% CI: 0.003352 to 0.02912, P = 0.0142, Table  3). 

Table 2  Comparisons of cerebellar tSTMN2 RNA, or soluble TDP-43 protein levels between controls and FTLD-TDP groups

β = regression coefficient; CI = confidence interval; RIN = RNA integrity number. β values, 95% CIs, and p-values result from unadjusted linear regression models or 
linear regression models adjusted for age, sex and, when the dependent variable was RNA, RINa. β values are interpreted as the difference in the mean levels of each 
variable of interest between controls and the indicated groups. P-values < 0.0125 are considered statistically significant after correcting for the comparisons of tSTMN2 
RNA or soluble TDP-43 protein between controls and 4 different FTLD-TDP groups and are marked in bold

N Median (minimum, 
maximum) levels

Unadjusted analysis Adjusting for age, sex and RINa

β (95% CI) P-value β (95% CI) P-value

tSTMN2 RNA

 Controls 25 480.6 (167.0, 2028) 0.00 (reference) N/A 0.00 (reference) N/A

 All FTLD-TDP 
cases

95 825.3 (172.8, 4218) 0.9352 (0.5235 to 1.347)  < 0.0001 0.7475 (0.3797 to 1.115) 0.0001

 No mutation 33 679.4 (172.8, 2542) 0.6433 (0.1641 to 1.123) 0.0009 0.6983 (0.2798 to 1.117) 0.0013
 C9orf72 29 1000 (402.4, 2325) 1.107 (0.6132 to 1.600)  < 0.0001 0.8483 (0.3963 to 1.300) 0.0003
 GRN 33 954.3 (233.5, 4218) 1.077 (0.5973 to 1.556)  < 0.0001 0.7264 (0.2618 to 1.191) 0.0025

TDP-43

 Controls 25 1.182 (0.01877, 2.568) 0.00 (reference) N/A 0.00 (reference) N/A

 All FTLD-TDP 
cases

95 0.5004 (0.01675, 3.319)  − 0.4087 (− 0.6325 to − 0.1849) 0.0004  − 0.2701 (− 0.4850 to − 0.05514) 0.0142

 No mutation 33 0.9068 (0.02343, 2.538)  − 0.1938 (− 0.4464 to 0.05882) 0.1314  − 0.1458 (− 0.3835 to 0.09190) 0.2268

 C9orf72 29 0.4710 (0.01675, 3.319)  − 0.4126 (− 0.6726 to − 0.1526) 0.0021  − 0.2722 (− 0.5268 to 0.01782) 0.0362

 GRN 33 0.3469 (0.01689, 1.812)  − 0.6201 (− 0.8727 to 0.3675)  < 0.0001  − 0.4736 (− 0.7301 to − 0.2170) 0.0004

Table 3  Associations of cerebellar TDP-43 with tSTMN2 RNA, age at onset, and disease duration in FTLD-TDP cases

β = regression coefficient; CI = confidence interval. β values, 95% CIs and p-values are shown for associations of TDP-43 with the indicated variables from unadjusted 
linear regression models or linear regression models adjusted for indicated variable. P-values < 0.0167 are considered statistically significant after correcting for 
multiple comparisons and are marked in bold

Variable N Unadjusted analysis Multivariable analyses

β (95% CI) P-value β (95% CI) P-value Multivariable model 
adjustments

tSTMN2 RNA 95  − 0.2604 (− 0.3621 
to − 0.1588)

 < 0.0001  − 0.2078 (− 0.3136 
to − 0.1021)

0.0002 Age, sex, and genotype

Age at onset (years) 85 0.02175 (0.009906 to 0.03359) 0.0005 0.01624 (0.003352 to 0.02912) 0.0142 Sex and genotype

Disease duration (years) 85 0.02088 (− 0.003103 to 
0.04487)

0.0871 0.02693 (0.004536 to 0.04932) 0.0190 Sex, age at onset and genotype
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Although TDP-43 protein levels did not associate with 
disease duration in unadjusted analysis (β: 0.02088, 95% 
CI: − 0.003103 to 0.04487, P = 0.0871, Fig. 2B, Table 3), a 
trend of lower TDP-43 and shorter disease duration was 
observed in analysis correcting for age, sex and genotype 
(β: 0.02693, 95% CI: 0.004536 to 0.04932, P = 0.0190, 
Table  3). Higher levels of cerebellar tSTMN2 RNA sig-
nificantly associated with an earlier age of disease in 
unadjusted analysis (β: − 0.02638, 95% CI: − 0.04788 
to − 0.004882, P = 0.0168, Additional file 1: Table S1) and 
trended toward significance in analysis adjusted for RIN 
and sex (β: − 0.02056, 95% CI: − 0.04029 to − 0.0008248, 
P = 0.0414, Additional file  1: Table  S1). Levels of 
tSTMN2 RNA did not associate with disease duration 
in either unadjusted (β: − 0.01976, 95% CI: − 0.06213 
to 0.02260, P = 0.3562, Additional file  1: Table  S1) or 
analysis adjusted for age, sex, and RIN (β: − 0.01474, 
95% CI: − 0.05858 to 0.02910, P = 0.5052, Additional 
file 1: Table S1). In aggregate, our data suggest that TDP-
43-mediated dysfunction in the cerebellum contributes 
to FTLD-TDP pathogenesis.

Discussion
We found decreased TDP-43 protein levels, increased 
tSTMN2 RNA levels, and a significant inverse association 
between them in the cerebellum of FTLD-TDP cases. To 
our knowledge, this is the first report of TDP-43 loss of 
function in the cerebellum, highlighting that the con-
sequences of a loss of TDP-43 splicing activity may be 
more extensive than previously thought. Several studies 
have found dysregulation of gene expression and splicing 

in the cerebellum of FTLD/ALS cases [15–18, 30, 31], 
with one study reporting extensive overlap between gene 
expression changes in the temporal and frontal cortices 
and the cerebellum [31]. Similarly, in Alzheimer’s dis-
ease and progressive supranuclear palsy, transcriptomic 
changes detected in the temporal cortex were preserved 
in the cerebellum [32]. Together, these studies suggest a 
common mechanism may account for the shared tran-
scriptomic alterations found in distinct brain regions for 
a given disease. Our data suggest loss of TDP-43 protein 
levels, and therefore TDP-43 function, may drive these 
transcriptomic changes in FTLD-TDP. In support of cer-
ebellar TDP-43 dysfunction, 70 genes with differential 
transcript usage, including polyadenylation, promoter 
usage and splicing were also identified as targets of TDP-
43 [31]. Similarly, TDP-43 was recently found to repress 
the inclusion of a cryptic exon harbored in the UNC13A 
gene [33, 34]. The UNC13A transcript with cryptic exon 
was detected in the frontal and temporal cortices of 
FTLD/ALS cases with TDP-43 pathology and was also 
found sparingly in the cerebellum [33, 34].

That we find splicing defects in the cerebellum, a region 
without significant TDP-43 inclusions, suggest that TDP-
43 loss of function is uncoupled from pathology. Reports 
documenting nuclear TDP-43 clearance in the absence of 
overt TDP-43 inclusions in regions with TDP-43 pathol-
ogy thus bear mentioning [29, 35–38]. It is also notewor-
thy that TDP-43 nuclear depletion, accompanied by brain 
atrophy and C9orf72-related pathology, were observed 
in the temporal lobe of a C9orf72 repeat expansion car-
rier following surgery for epilepsy [38]. Subsequent post-
mortem analysis years later, following the onset of FTD 
symptoms, revealed TDP-43 inclusions in this individual, 
suggesting that loss of nuclear TDP-43 is an early patho-
logical event [38]. Further, neurons depleted of TDP-43 
in the absence of TDP-43 inclusions were reported to 
have degenerate morphologies, suggesting that TDP-43 
loss of function alone can contribute to neurodegen-
eration [37, 38]. TDP-43-regulated cryptic exon splice 
variants were found to accumulate in the hippocampi of 
Alzheimer’s disease brains containing TDP-43-depleted 
neurons without TDP-43 inclusions [29]. Likewise, 
tSTMN2, the UNC13A variant with the cryptic exon and 
other alternatively spliced genes were detected in TDP-
43 negative nuclei isolated from FTD/ALS cases [34, 39]. 
Taken together, these reports, combined with our present 
cerebellar data, underscore that TDP-43 nuclear clear-
ance and loss of function can occur independently of 
inclusion formation and may be an early event in TDP-43 
proteinopathy.

We noted that loss of soluble TDP-43 protein was 
more pronounced in the cerebellum of mutation carri-
ers with the decrease in non-mutation carriers failing to 

Fig. 2  Lower levels of cerebellar TDP-43 associated with an earlier 
age at disease onset. Associations of TDP-43 protein levels with age 
at disease onset or disease duration (i.e., time from disease onset to 
death) were examined in FTLD-TDP cases. A Lower TDP-43 protein 
significantly associated with younger age at disease onset. B A 
non-significant trend of lower TDP-43 protein levels and shorter 
disease duration was observed. Regression coefficients (β), 95% 
confidence intervals (95% CI) and P-values from unadjusted linear 
regression models are shown. Values for linear regression models 
adjusted for age, sex and genotype are shown in Table 3
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reach statistical significance. However, each FTLD-TDP 
group (i.e., non-mutation carriers, C9orf72 expansion 
carriers or GRN mutation carriers) showed a signifi-
cant accumulation of tSTMN2 RNA arguing that even 
a minor change in TDP-43 levels results in aberrant 
STMN2 splicing. These data suggest that tSTMN2 and 
other cryptic exon-containing transcripts normally sup-
pressed by TDP-43 are sensitive markers of TDP-43 loss 
of function, thus providing a rationale to study their 
possible utility as biomarkers for distinguishing patients 
with FTD caused by TDP-43 proteinopathy vs. tauopa-
thy—an endeavor of great importance to the FTD field.

We additionally observed that lower levels of cerebel-
lar TDP-43 associated with an earlier age at disease 
onset, suggesting that maintaining cerebellar TDP-43 
levels may be protective in FTLD-TDP. We also noted 
a trend of higher tSTMN2 RNA associating with lower 
age at disease onset, in agreement with our earlier 
study finding a significant association between tSTMN2 
in the frontal cortex and disease onset in a larger 
FTLD-TDP cohort [28]. In combination with previ-
ously reported transcriptomic and splicing changes [17, 
18, 31], and imaging studies demonstrating gross cer-
ebellar atrophy [19–24], these findings strongly support 
a cerebellar contribution to FTLD-TDP pathogenesis.

Conclusions
Overall, we conclude that TDP-43 loss of function may 
be more pervasive than initially appreciated, and that 
further study of the role of the cerebellum in the patho-
genesis of FTLD-TDP is warranted.
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