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Abstract 

Although Down syndrome (DS), the most common developmental genetic cause of intellectual disability, displays 
proliferation and migration deficits in the prenatal frontal cortex (FC), a knowledge gap exists on the effects of trisomy 
21 upon postnatal cortical development. Here, we examined cortical neurogenesis and differentiation in the FC 
supragranular (SG, II/III) and infragranular (IG, V/VI) layers applying antibodies to doublecortin (DCX), non-phosphoryl‑
ated heavy-molecular neurofilament protein (NHF, SMI-32), calbindin D-28K (Calb), calretinin (Calr), and parvalbumin 
(Parv), as well as β-amyloid (APP/Aβ and Aβ1–42) and phospho-tau (CP13 and PHF-1) in autopsy tissue from age-
matched DS and neurotypical (NTD) subjects ranging from 28-weeks (wk)-gestation to 3 years of age. Thionin, which 
stains Nissl substance, revealed disorganized cortical cellular lamination including a delayed appearance of pyramidal 
cells until 44 wk of age in DS compared to 28 wk in NTD. SG and IG DCX-immunoreactive (-ir) cells were only visual‑
ized in the youngest cases until 83 wk in NTD and 57 wk DS. Strong SMI-32 immunoreactivity was observed in layers 
III and V pyramidal cells in the oldest NTD and DS cases with few appearing as early as 28 wk of age in layer V in NTD. 
Small Calb-ir interneurons were seen in younger NTD and DS cases compared to Calb-ir pyramidal cells in older sub‑
jects. Overall, a greater number of Calb-ir cells were detected in NTD, however, the number of Calr-ir cells were com‑
parable between groups. Diffuse APP/Aβ immunoreactivity was found at all ages in both groups. Few young cases 
from both groups presented non-neuronal granular CP13 immunoreactivity in layer I. Stronger correlations between 
brain weight, age, thionin, DCX, and SMI-32 counts were found in NTD. These findings suggest that trisomy 21 affects 
postnatal FC lamination, neuronal migration/neurogenesis and differentiation of projection neurons and interneurons 
that likely contribute to cognitive impairment in DS.
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Introduction
Down syndrome (DS) is a genetic disorder caused by 
trisomy of chromosome 21 that is characterized by 
developmental delay, intellectual disability and memory 
impairment linked, in part, to a reduction in the volume 

of the frontal cortex (FC), hippocampus and cerebellum 
[2, 25, 62]. By middle age, individuals with DS display 
beta-amyloid (Aβ) plaques and tau-laden neurofibril-
lary tangles (NFTs) and are at a greater risk of develop-
ing AD-type dementia [33, 48]. Children with DS display 
deficits in cognitive function, attention, emotional behav-
ior, executive function, working memory and language, 
in part associated with damage to the six-layered FC [22, 
91]. In neurotypical development, cortical laminar dif-
ferentiation begins between 26 and 29 wk of gestation 
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including a rapid appearance of pyramidal neurons and 
interneurons in layers III and V, resulting in a mature six-
layered cortex at birth [61]. Postnatal development also 
plays a critical role in the continued maturation of a well-
differentiated FC, which involves tightly regulated spa-
tiotemporal processes mediating cellular proliferation, 
migration, targeting and connectivity, and perturbations 
of these events contribute to intellectual disability [19, 
78].

Fetal and neonatal DS brains show decreases in cell 
number, disorganized and delayed cortical lamination, 
and abnormalities in synaptodentritic processes [28, 32, 
42, 72, 86]. Moreover, prior to 24 wk of gestation there 
are reductions in both cellular proliferation and radial 
glia in the DS neocortex [5, 14, 42, 44, 49]. These altera-
tions have been associated with impaired neurogenesis 
during fetal gestation [84] and overexpression of amyloid 
precursor protein (APP) and its metabolite Aβ, which are 
detected as early as 21 gestational wk [49, 87]. Intraneu-
ronal Aβ has been reported as early as 1  year [81] with 
accumulations of Aβ peptides appearing between the 
ages of 8 to 12 years [12, 30]. Although phospho-tau has 
been found intra-neuronally at early ages in individu-
als with DS, fully mature NFTs do not appear until the 
fourth decade of life [12, 31]. Fetal APP, with its gene 
located on chromosome 21, has been implicated in neu-
rogenesis, neuronal differentiation and synaptogenesis 
during neurotypical development [23, 64], is increased 
and associated with alterations in GABAergic systems in 
development [58] and adulthood in DS [15]. Additionally, 
human phosphorylated fetal tau (N03R), found in distal 
portions of growing axons, is downregulated after axons 
reach their target sites before birth [80] and perturbed 
early in the maturation of the DS brain [57]. Although 
evidence suggests that changes in prenatal brain develop-
ment disrupt the function and structure of cortical areas 
in DS, there is a lack of information regarding postnatal 
cortical abnormalities in DS. Defining the alterations in 
cortical neuronal differentiation and cyto- and chemical 
architecture [75, 82] is crucial for a better understanding 
of cortical neuronal circuitry and neurotransmission dur-
ing the postnatal period of brain development in DS.

The effects of trisomy 21 on postnatal FC maturation 
remain under-investigated. Here, we examined postna-
tal differentiation of neuronal profiles using quantitative 
immunohistochemistry for the intermediate cytoskeletal 
non-phosphorylated high-molecular-weight neurofila-
ment (NHF) proteins; the GABAergic interneuron cal-
cium-binding proteins (CBP) Calbindin D-28K (Calb), 
Calretinin (Calr) and Parvalbumin (Parv); the neuronal 
microtubule-associated protein doublecortin (DCX); 
and the cellular proliferation marker Ki-67 applied to 
FC tissue obtained postmortem from 28-wk gestation to 

3-year-old DS and NTD cases. In addition, we also exam-
ined the presence of Aβ and phosphorylated tau proteins 
using antibodies to APP/Aβ (6E10), Aβ1–42, PHF-1, and 
CP13.

Subjects, materials and methods
Subjects and tissue samples
Postmortem FC tissue was obtained from 11 male and 
8 female cases ranging from premature (31 gestational 
wk) to 196 wk with DS (n = 10) and age-matched neu-
rotypical (NTD) controls (n = 9). DS tissue was acquired 
from Phoenix Children’s Hospital (PCH) (n = 4) and 
Ann & Robert H. Lurie Children’s Hospital of Chicago 
(LCH) (n = 6), while NTD samples were obtained from 
PCH (n = 9). Tissue was processed according to IRB 
guidelines meeting exemption criteria in 45 CFR 46.101 
(b) and managed under Barrow Neurological Institute 
recommendations.

Sex, age at birth and death, postnatal life between birth 
and death, brain weight, body weight, height (measured 
crown to heel), postmortem interval (PMI) and cause of 
death/comorbidity are reported in Table 1. Additionally, 
tissue was examined from 1 NTD and 3 DS premature 
infants, who died prior to 40 wk of gestation, which is 
considered a full-term pregnancy/infant [83] (Table  1). 
To take into account the developmental stage of pre-
mature (preterm) infants, age consisted of combining 
the number of gestational wk at birth plus the number 
of postnatal wk of life. In all DS cases, trisomy 21 was 
confirmed at each institution using standard peripheral 
blood lymphocyte karyotyping procedures. Independ-
ent of tissue source, all brains were fixed in 10% neutral 
buffered formalin and embedded in paraffin. Blocks con-
taining the FC were sectioned at 4  µm (DS-PCH) and 
8  µm (DS-LCH/Control-PCH) thickness on a Minot 
microtome, mounted on charged slides and stored at 
room temperature until processing.

Immunohistochemistry
Two cortical sections from each case were deparaffinized, 
rehydrated in a descending series of ethanol concentra-
tions (100%, 95%, 70%, and 50%) and pretreated either 
with a citric acid (pH 6) solution for 10  minutes (min) 
in a microwave or with 88% formic acid for 10  min to 
detect APP/Aβ and Aβ1–42. Immunohistochemistry was 
performed as previously described [60] using antibod-
ies directed against non-phosphorylated heavy-molec-
ular-weight neurofilament peptide (SMI-32), which is 
highly expressed in human neocortical layers III and V 
pyramidal neurons [11, 18, 36, 55], DCX (a marker of 
neurogenesis), and Ki-67 (a nuclear marker of prolif-
eration/cell division) [20, 77]. APP/Aβ (6E10), Aβ1–42, 
CP13, PHF-1, and CBPs (Calb, Calr and Parv). Sections 
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were washed and incubated with a primary antibody (see 
Table 2) in a Tris-buffered saline (TBS) Triton X-100/1% 
goat serum (GS) solution overnight at room tempera-
ture. After three 1% GS TBS washes, the sections were 
incubated with a goat anti-mouse or anti-rabbit bioti-
nylated secondary antibody (1:200) for 1  h (hr) (Vec-
tor Labs, Burlingame, CA) based upon the appropriate 
primary antibody, followed by Vectastain ABC kit (1  h) 
(Vector Labs) incubation. Subsequently, sections were 
developed in acetate-imidazole buffer solution contain-
ing 0.05% 3,3′-diaminobenzidine tetrahydrochloride 
(DAB) (Thermofisher Scientific, Waltham, MA) and 
0.005% hydrogen peroxide. To enhance immunostain-
ing for CP13, sections were developed using a solution 
consisting of DAB and nickel sulfate (0.5%) resulting in 
a blue-black precipitate. Slides were then dehydrated in 
an ascending series of ethanol concentrations (50%, 70%, 
95%, and 100%), cleared in xylenes, and coverslipped 
using DPX (Electron Microscopy Sciences, Hatfield, PA). 
An immunostained section per case was counterstained 
using Mayer’s Hematoxylin for 1.5  min, washed under 
running tap water for 4 min, soaked in a bluing solution 
for 20 s, washed in distillated water, dehydrated, cleared 
in xylenes, and coverslipped using DPX. To control for 
batch-to-batch variation, sections from each case were 
processed simultaneously for each antibody. Controls 
consisted of the omission of primary antibodies resulting 

in a lack of immunoreactivity. To test the specificity of 
6E10 immunostaining, this antibody was preabsorbed 
against purified human Aβ1–17 (AnaSpec Inc., Fremont, 
CA) at a concentration of 50–500  µg/μl overnight, fol-
lowed by immunolabeling of postnatal cortical tissue 
according to the above protocol, resulting in a reduc-
tion of immunoreactivity in both groups. Additionally, 
FC paraffin embedded tissue from an 82-year-old female 
with neuropathologically confirmed AD (Braak NFT 
stage VI) and an anaplastic astrocytoma tumor (8-year-
old female) were used as positive controls for tau [80], Aβ 
and Ki-67 antibody staining.

Immunofluorescence
Sections were deparaffinized, hydrated, and pretreated 
with heated citric acid (pH 6) in a microwave for 10 min. 
Sections were then incubated simultaneously with a 
mouse monoclonal against SMI-32 (1:50, Biolegend, San 
Diego, CA) and a rabbit polyclonal against Calb (1:75, 
Swant, Marly, Switzerland) in a solution containing 
TBS 0.25% Triton X-100/1% donkey serum overnight at 
room temperature. After three washes in TBS/1% don-
key serum solution, sections were incubated with a don-
key anti-mouse Cy3 secondary antibody (1:300, Jackson 
Immunoresearch Laboratories, Inc., Chester County, PA) 
for 1 h followed by TBS washes and incubated with a don-
key anti-rabbit Cy5 secondary antibody (1:200, Jackson 

Table 2  Antibody characteristics

*Immunofluorescence staining

Antigen Primary antibody Dilution Company Cat. # Secondary Antibody (Company)

SMI-32* Mouse monoclonal to anti-Neurofilament H, non-phospho‑
rylated

1:500
1:50*

Biolegend
801701

Biotinylated goat anti-mouse IgG 
(Vector Laboratories)
Cy3 donkey anti-mouse IgG 
(Jackson Immunoresearch Labo‑
ratories)*

APP/Aβ Mouse monoclonal to residues 1–16 of Aβ (6E10) 1:300 Biolegend
803002

Parvalbumin Mouse monoclonal anti-parvalbumin 1:500 Millipore
MAB1572

Doublecortin Mouse monoclonal neuronal migration protein DCX E-6 1:250 Santa Cruz
Biotechnology
sc-271390

CP13 Mouse monoclonal phospho-tau (Ser202) 1:100 Gift from Peter Davies

PHF-1 Mouse monoclonal phospho-tau (Ser396/Ser404) 1:100 Gift from Peter Davies

Ki-67 Mouse monoclonal to human MIB-1 1:500 Dako
M7240

Calbindin D28-K* Rabbit polyclonal to 28 kD calcium-binding protein 1:1000
1:75*

Swant
CB38

Biotinylated goat anti-rabbit IgG 
(Vector Laboratories)
Cy5 donkey anti-rabbit (Jackson 
Immunoresearch Laboratories)*

Calretinin Rabbit polyclonal to 99 aa epitope from the internal region 
of rat calretinin

1:500 Millipore
AB5054

Aβ1–42 Rabbit polyclonal to 6 aa peptide sequence from C-terminus 
of human Aβ1–42

1:100 Millipore
AB5078P
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Immunoresearch Laboratories, Inc., Chester County, 
PA) for 1  h. After several washes in TBS, sections were 
incubated with the nuclear marker DAPI  (D1306, Invit-
rogen, Carlsbad, CA) at 1:2000 concentration for 10 min. 
Subsequently, slides were washed and coverslipped using 
Invitrogen Prolong Glass Antifade Mountant (Invitrogen, 
Carlsbad, CA). Immunofluorescence images were cap-
tured using an Echo Revolve Fluorescence microscope 
(San Diego, CA).

Histochemistry
To examine FC cytoarchitecture, two additional slides 
from each case were stained using thionin, a Nissl stain 
that visualizes the neuronal endoplasmic rough reticulum 
and nucleus [40]. Sections were deparaffinized, placed in 
100% ethanol for 3 min then a 50% chloroform/50% etha-
nol solution for 15 min, rehydrated in a decreasing gra-
dient of alcohols, soaked in a 0.5% thionin solution (pH 
4.3) for 7 min, washed with distilled water, dehydrated in 
an increasing gradient of alcohols, cleared in xylenes, and 
coverslipped using DPX (Electron Microscopy Sciences, 
Hatfield PA) [60]. To control for batch-to-batch variation, 
sections from each case were processed at the same time, 
masked to demographics.

Cell quantitation
Tissues stained for thionin, SMI-32, DCX, Calb, Calr, 
Parv, APP/Aβ (6E10), Aβ1–42, CP13, and PHF-1 were 
imaged using a Nikon Eclipse 80i and analyzed using 
NIS-Elements BR software. All cell density counts 
were performed in 10 different areas on each slide at 
400 × magnification within SG layers II-III and IG layers 
V-VI, except for Calb which was counted at 200 × magni-
fication (due to the low density of positive cells) and an 
average cell count was calculated for each layer per case. 
Additionally, all counts were normalized against thionin-
stained cell numbers. APP/Aβ plaque number and 
load were examined at 100 × magnification and plaque 
load was calculated as a percentage of the area immu-
nostained versus the area examined of 1.02 mm2 using 
NIS-Elements BR software. Counts were performed by 
an investigator blind to case demographics.

Statistical analysis
Non-parametric statistics were used for all analyses 
due to small sample sizes for the AD and NTD groups 
(n ≤ 10) and that assumptions of normality and equality 
of variance were not met for any of the numeric depend-
ent variables. Neuronal counts and case demographics 
were compared between groups using a non-parametric 
Mann–Whitney rank sum test, a Wilcoxon signed rank 
test and Fisher exact test (SigmaPlot 14.0, Systat Soft-
ware, San Jose, CA). Statistical significance level (p) was 

set at less than 0.05 (two-tailed). Correlations for within-
group cell count variables were performed using a Spear-
man’s rank correlation and false discovery rate (FDR) was 
applied to control for Type I error when conducting mul-
tiple comparisons. Cell counts were graphically presented 
using boxplots, histograms and dot plots and correlations 
were represented as linear regressions (SigmaPlot 14.0, 
Systat Software, San Jose, CA).

Results
Case demographics
There were no significant differences in age, brain weight, 
height (measured from crown to heel), or body weight 
between DS and NTD groups (Mann–Whitney rank sum 
test; p > 0.05, Table 3). Average age was 61.22 wk (range, 
28–174) for NTD and 72.63 wk (range, 31–196) for DS; 
average brain weight was 591.63  g (range, 160–1134) 
for NTD and 462.15  g (range, 176–1163) for DS; aver-
age height was 58.10  cm (range, 38–90) for NTD and 
56.66 cm (range, 42–97) for DS; average body weight was 
5.82 kg (range, 2–13) for NTD and 5.66 kg (range, 2–14) 
for DS. No significant differences were found for PMI 
(Mann–Whitney rank sum test; p > 0.05) or sex (Fisher 
exact test; p > 0.05) between groups.

Postnatal FC cytoarchitecture
Thionin stained sections were used to examine the lami-
nation and cytoarchitecture of the FC from DS cases 
aged 31 to 196 wk compared to 28 to 174 wk NTD infants 
and children (Fig.  1). Although FC thionin-stained sec-
tions revealed the appearance of a six-layered cortex, 
cortical lamination was better differentiated at NTD ages 
28 to 174 wk, than in DS cases (Fig. 1A–F). Despite the 
low intensity of thionin cytoplasmic staining seen in the 
youngest NTD case (28 wk), the FC displayed a develop-
ing isocortical lamination pattern consisting of non-dif-
ferentiated cellular profiles displaying apical processes. 
In NTD, layer V displayed large pyramidal-shaped neu-
rons (Fig.  1a1, a4). By contrast, at 32 wk the DS cortex 
displayed more intense thionin neuronal staining with 
more compact cortical layers (Fig. 1B). Layer II displayed 
dense clusters of strongly stained cells (Fig.  1B, b1) but 
layer V lacked the appearance of large pyramidal neurons 
as seen in the 28 wk NTD case (Fig. 1b3). Interestingly, at 
32 and 44 wk we found a distinct layer IV in DS (Fig. 1B, 
D), which was not observed in NTD (Fig. 1C). At 44 wk, 
cellular differentiation, particularly in pyramidal cells in 
layers III and V, was evident in both NTD and DS cases 
(Fig. 1c2, c3, d2, d3). Layer VI showed fusiform neurons 
at 44 wk in NTD (Fig.  1c4), but not in DS. At this age, 
as well as at 196 wk, the lamination of the DS cortex 
(Fig. 1D, F) was still less well-differentiated compared to 
NTD (Fig. 1C, E). In the oldest (196 wk) DS case, a less 
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organized cortex containing a higher density of small 
undifferentiated cellular profiles was observed compared 
to the oldest 174 wk NTD case. At this age, layer III and 
V neurons had a more typical pyramidal shape in NTD 
(Fig. 1E, F).  

Quantitation of thionin-stained cells in SG (II-III) 
and IG (V-VI) layers revealed no significant differences 
between groups. A within group analysis found sig-
nificantly greater cell numbers in SG compared to IG in 
both NTD (Wilcoxon signed rank test, p = 0.004) and DS 
(Wilcoxon signed rank test, p = 0.027) (Fig. 2).

Postnatal FC proliferation and neurogenesis
Sections immunostained for Ki-67, a nuclear protein 
expressed during cell division that marks cell prolifera-
tion, did not reveal positive profiles at any age in either 
group (e.g., Fig.  2A–D). DCX, a microtubule-associated 
protein highly expressed in neuroblasts/immature neu-
rons, was used to reveal neurogenesis and neuronal 
migration in the postnatal FC. DCX-ir cells were observed 
in SG and IG layers from 28 to 83 wk in NTD (Fig.  3E, 
F, I, J) and from 31 to 53 wk in DS (Fig. 3G, H, K, L). In 
the youngest cases from both groups (28 to 44 wk NTD, 
33 to 44 wk DS), DCX immunoreactivity was most promi-
nent in small undifferentiated cells within SG layers II-III 
(Fig. 3E–L), which displayed immunoreactivity in leading 
apical processes. Notably, layers II-III and V-VI showed 

stronger DCX immunoreactivity in DS compared to NTD 
at 44 wk (Fig. 3I–L), but no immunostaining was seen in 
the oldest cases in either group (Fig. 3M–P). These find-
ings suggests that neurogenesis is completed earlier and 
plays a role in FC dysfunction in DS.

Quantitation revealed no significant difference in 
DCX-ir cell numbers in SG and IG layers between NTD 
and DS (Mann–Whitney rank sum test, p > 0.05). By 
contrast, a within group analysis revealed a significantly 
greater number of DCX-ir cells in SG compared to IG 
layers (Wilcoxon signed rank test, p = 0.008) (Fig.  3Q). 
When data were normalized to thionin counts, similar 
findings were found in NTD, but not DS cases. Moreo-
ver, we did not find a significant difference in DCX-ir cell 
number between SG and IG layers.

Postnatal FC NHF profiles
SMI-32 detects an intermediate non-phosphorylated 
neurofilament protein highly expressed in the soma and 
dendrites of mature neocortical pyramidal neurons [11, 
18, 36, 55], which marks neuronal maturation (Fig.  4). 
Although we observed greater neuropil SMI-32 immu-
noreactivity at 32 wk in DS compared to 28 wk in NTD 
(Fig. 4G, H), only a few SMI-32-ir pyramidal-shaped cells 
were found in layer V in NTD (Fig. 4B). From 41 wk and 
onwards, pyramidal neurons were observed in layers III 
and V showing strong immunoreactivity in apical and 

Table 3  Summary of case demographics

a Mann–Whitney rank sum test
b Fisher exact test, ns; not significant

*Mean ± standard error (SE)

NTD
n = 9

DS
n = 10

p value

Age (wk) 61.22 ± 15.06*
Min. 28.00; Max. 174.70

72.63 ± 20.40
Min. 31.57; Max. 196.43

nsa

Brain weight (g) 591.63 ± 110.85
Min. 160.40; Max. 1134.90

462.15 ± 102.19
Min. 176.00; Max. 1163.00

nsa

Height (cm) 58.10 ± 5.67
Min. 38.20; Max. 90.10

56.66 ± 6.29
Min. 42.00; Max. 97.00

nsa

Body weight (kg) 5.82 ± 1.17
Min. 2.40; Max. 13.10

5.66 ± 1.43
Min. 2.10; Max. 14.40

nsa

PMI (hr) 23.00 ± 4.19
Min. 6.00; Max. 46.00

32.00 ± 6.75
Min. 12.00; Max. 76.00

nsa

Sex M (%)/F (%) 5 (66.66%)/4 (33.33%) 5 (50.00%)/5 (50.00%) nsb

Fig. 1  Low-magnification images of thionin-stained FC showing lamination patterns in 28 (A), 44 (C), and 174 (E) wk in NTD and 32 (B), 44 (D), and 
196 (F) wk in DS. Layers I-VI were also imaged at a higher magnification for each NTD (28 wk: a1–a5; 44 wk: c1–c5; 174 wk: e1–e5) and DS (32 wk: 
b1–b5; 44 wk: d1–d5; 196 wk: f1–f5) case showing cell type and cellular distribution. Note the presence of pyramidal neurons in layer V at 28 wk in 
a premature NTD infant, while lacking in a 32 wk DS infant, as well the higher cell density in layers II to VI in DS than in NTD at all ages. Scale bar in B, 
D and F = 200 µm and applies to A, C and E; a5, d4 and f4 = 25 µm applies to a1–b2, c1–d3 and e1–f3, respectively

(See figure on next page.)
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basal processes, exclusively in NTD (Fig. 4C–F). By con-
trast, only the oldest DS case (196 wk) contained SMI-
32-ir pyramidal cells in layers III and V (Fig. 4K, L).

Although a greater number of SMI-32-ir cells were 
present within layer V in NTD compared to DS, no sig-
nificant differences in neuronal counts were observed 
between groups when comparing SG and IG layers 
(Fig.  4M) (Mann–Whitney rank sum test, p > 0.05). In 
addition, no significant differences  were found between 
the SG and IG counts within groups (Fig. 4M) (Wilcoxon 
signed rank test, p > 0.05), similar to that found when data 
were normalized to thionin cell counts.

Postnatal CBP reactivity in the FC
Calb, Calr, and Parv were used to visualize the develop-
ment of non-pyramidal interneurons in the FC. Micro-
scopic analysis revealed a few undifferentiated Calb-ir 
cells in layer V in the youngest NTD infant (28 wk) com-
pared to extensive immunoreactivity throughout the 

cortical neuropil, but not in cells, in the youngest DS 
infant (33 wk) (Fig.  5A, B, K, L). At 41 wk in NTD, we 
found a band of Calb-ir in the external portion of layer 
I, positive cells in layers II/III and fusiform-appearing 
neurons in layers V/VI (Fig.  5C–F). Although layer I 
was not Calb positive, small oval-shaped Calb-ir cells 
were scattered in layers II/III and V/VI at 44 wk in DS 
(Fig.  5M–P). In both the oldest NTD (174 wk) and DS 
(196 wk) cases, layer II showed Calb-ir interneuronal and 
pyramidal cells, while layers III and V displayed strongly 
immunostained pyramidal-shaped perikarya and apical 
dendrites (Fig. 5G–J, Q–T). Calb-ir apical processes were 
more evident in the oldest NTD compared to the oldest 
DS case (Fig. 5J, T).

In NTD, Calr-ir cells were not seen in the FC until 
44 wk of age (Fig.  6A, B). At this age, numerous small 
cells were observed in layers II/III (Fig.  6B). In the old-
est NTD case (174 wk), larger bipolar fusiform-shaped 
Calr-ir perikarya were observed in layers II/III and V 
(Fig.  6C, D). In contrast, as early as 32 wk, Calr-ir cells 
were observed in layers II/III in DS (Fig.  6E). At 44 wk 
in DS, layer II/III Calr-ir neurons appeared larger in size 
and more abundant (Fig. 6F). At wk 196 in DS, fusiform-
shaped Calr-ir cells were found in layers II/III and V/VI 
(Fig. 6G, H).

Unlike Calb and Calr, Parv immunoreactivity was not 
detected in the youngest DS and NTD cases (Fig. 6I, J, M, 
N). The first Parv-ir cells were seen in layers V/VI in the 
oldest DS case (196 wk) (Fig. 6O, P), but not in NTD (174 
wk) (Fig. 6K, L).

Quantitation revealed that Calb-ir cell number in 
SG (Mann–Whitney rank sum test, p = 0.003) and IG 
(Mann–Whitney rank sum test, p = 0.024) layers were 
significantly higher in NTD compared to DS (Fig.  7A). 
In contrast, there were no significant differences in Calb-
ir cell number between SG and IG layers within groups 
(Wilcoxon rank signed test, p > 0.05) (Fig.  7A) and nor-
malized data revealed no significant changes in Calb-
ir cell numbers in SG and IG within groups or between 
groups. Unlike Calb, there were no significant differences 
in Calr-ir cell numbers between NTD and DS in any 
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Fig. 2  Boxplot showing thionin-positive cell count average in the SG 
(II–III) and IG (V–VI) lamina in NTD (n = 9) and DS (n = 10). Statistical 
analysis revealed a significantly greater number of cells in SG compared 
to IG for both NTD and DS (Wilcoxon signed rank test, NTD p = 0.004; 
DS p = 0.027). No significant differences were found in the SG and IG 
layers between groups (Mann–Whitney rank sum test). *p < 0.05

Fig. 3  Images showing the absence of Ki-67 immunostaining in the SG and IG layers in a 28 wk NTD (A, B) and a 31 wk DS (C, D). Photos of 
DCX- immunoreactivity in cortical SG and IG layers in NTD aged 28 (E, F), 44 (I, J) and 174 wk (M, N) and DS aged 33 (G, H), 44 (K, L), and 196 (O, P) 
wk subjects. Note that DCX immunostaining decreased with age and was absent in the oldest cases in both groups (M–P). Small undifferentiated 
cells were DCX positive in 28–44 wk NTD (E, F, I, J) and 33–44 wk DS (G, H, K, L) cases. Note many more DCX positive cells in SG and IG layers at DS 
44 wk compared to a NTD 44 wk suggesting a delay in neuronal migration/neurogenesis in DS. Boxplot showing a significantly greater number of 
DCX positive cells in SG compared to IG in both NTD (n = 9) and DS (n = 10) (Q) (Wilcoxon signed rank test, NTD p = 0.008; DS p = 0.008), while no 
significant differences were found in the SG and IG layers between groups (Mann–Whitney rank sum test). *p < 0.05. Scale bars: D = 50 µm applies to 
A–C; F = 50 µm applies to E; H = 50 µm applies to G; J = 50 µm applies to I; L = 50 µm applies to K; N = 50 µm applies to M; and P = 50 µm applies 
to O 

(See figure on next page.)
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layer (Mann–Whitney rank sum test, p > 0.05) (Fig.  7B). 
Calr-ir counts revealed a significantly greater cell den-
sity in SG compared to IG in NTD (Wilcoxon signed 
rank rest, p = 0.016) and in DS (Wilcoxon signed rank 

test, p = 0.008) (Fig.  7B). Although normalization of the 
data yielded similar findings for NTD, there were no sig-
nificant differences in Calr-ir cell density between the SG 

SMI-32NTD DS
Layer II-III Layer V Layer II-III Layer V

A B

C D

E F

G H

I J

K L

28 wk

41 wk

174 wk

32 wk

44 wk

196 wk

M

NTD

DS

Fig. 4  Images showing SMI-32 immunostaining in NTD at 28 (A, B), 41 (C, D), and 174 wk (E, F) and in DS at 32 (G, H), 44 (I, J), and 196 wk (K, L). In 
the youngest 28 wk NTD case, lightly labeled SMI-32-ir cells pyramidal were found in layer V (A, B). Note the increase in SMI-32 immunoreactivity at 
32 weeks in DS (G, H). At 41 and 44 wk, SMI-32-ir pyramidal cells were observed in layers III and V in NTD (C, D), whereas none were seen in DS (I, J). 
In the oldest cases, 174 wk NTD and 196 wk DS, strong SMI-32-ir pyramidal cells with apical processes were observed in layers III and V (E, F, K, L). 
Note the presence of many more basal process (arrows) in SMI-32 positive pyramidal neurons in layer V in the oldest 174 wk NTD compared to 196 
wk DS case. M Dot plot showing no significant differences in SMI-32-ir cell counts between groups or within groups between SG and IG layers (NTD: 
n = 9, DS: n = 10) (Mann–Whitney rank sum test, Wilcoxon signed rank test). Notably, the IG area (V–VI) in NTD showed the highest SMI-32-ir cell 
count. Scale bars = 50 µm
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Fig. 5  Images showing Calb immunostaining in NTD at 28 (A, B), 41 (C–F), and 174 (G–J) wk and in DS at 32 (K, L), 44 (M–P) and 196 (Q–T) wk. A 
small number of Calb-ir cells with pyramidal shape were visible in layer V in a 28 wk NTD (B) compared to extensive Calb-ir neuropil. Calb positive 
pyramidal cells in SG and IG layers at 32 wk in DS (K, L). At 41 weeks in NTD, Calb immunoreactivity was seen in layer I (C), in small cells in layers II/
III (C, D) and fusiform neurons in layers V/VI (E, F). At 44 weeks in DS, Calb immunostaining was only observed in small cells in layers II/III (N) and V/VI 
(O, P). In the oldest cases (174 wk NTD and 196 wk DS), Calb-ir interneurons and pyramidal cells were seen in layer II (G, Q), while strong cytoplasmic 
Calb immunoreactivity was seen in pyramidal cells in layer III (H, J, R, T) and layer V (I, S). Inset in T shows a higher magnification image of Calb-ir 
interneuron in layer III at 196 weeks in DS. Note greater Calb immunoreactivity in the pyramidal apical process in the oldest NTD (H–J) compared to 
the oldest DS case (R–T). Scale bars: A–I = 50 µm; J, T and inset = 20 µm; K–S = 50 µm
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and IG layers in DS. Due to the limited number of Parv 
positive profiles, statistical analysis was not performed.

FC APP/Aβ, Aβ1–42 and phosphorylated tau 
immunoreactivity
To reveal the presence of Aβ plaques in the FC, we 
used antibodies that detect either APP/Aβ (6E10) or 
Aβ1–42, the main component of neuritic/senile plaques 
resulting from the concerted cleavage of APP by β- and 

γ-secretase. We found 6E10-ir accumulations, simi-
lar to diffuse plaques, in the FC gray and white mat-
ter at all ages with no specific laminar distribution in 
either group (Fig.  8A–H). APP/Aβ-ir granules were 
observed in the cytoplasm of pyramidal-shaped cells 
only in the oldest NTD (174 wk) and DS (196 wk) cases 
(Fig.  8C, G). Conversely, Aβ1–42 immunoreactivity was 
not observed in the FC in either group, suggesting that 
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Fig. 6  Images showing Calr immunostaining in NTD aged 28 (A), 44 (B), and 174 (C, D) wk and in DS at 32 (E), 44 (F), and 196 (G, H) wk. No positive 
cells were observed in 28 wk NTD (A), while small neurons displayed staining at 44 wk NTD in layers II/III (B). In 174 wk NTD, large bipolar fusiform 
cells were observed in layers II/III (C) and layer V (D). A 32 wk DS case displayed small Calr-ir cells in layers II/III (E). Note that the cellular processes 
stained more intensely in layers II/III at 44 wk (F). In a 196 wk DS case, fusiform Calr-ir cells were observed in layer III (G) and layers V/VI (H). Images 
showing the absence of Parv immunoreactivity in FC SG and IG layers in 28 and 174 wk NTD (I–L) and the youngest 31 wk DS cases (M–N). Small 
and intensely stained Parv-ir cells were seen in layers V/VI in the oldest 196 wk DS case (O, P). Scale bars = 50 µm
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non-amylogenic APP derivatives comprise these accu-
mulations [16].

Furthermore, two markers were used to detect the 
presence of phosphorylated tau during FC development: 
CP13 and PHF-1. Granular CP13 immunoreactivity was 
seen in layer I in a few of the youngest cases in both 
groups (41 wk NTD and 33 wk DS) (Fig. 8I–L). Although 
a narrow band of CP13 staining was restricted to layer I 
in NTD (41 wk), dense and more extensive staining was 
observed throughout layer I in DS (33 wk) (Fig.  8J, K). 
CP13-ir cells were not seen in any cortical layer in either 
group. PHF-1 immunoreactivity was absent in both NTD 
and DS.

Quantitation of APP/Aβ-ir plaque load and number 
revealed no significant differences between DS and NTD 
(Mann–Whitney rank sum test, p > 0.05) (Fig. 8M, N).

FC Co‑localization of SMI‑32 and Calb
To determine whether the long projection neurons 
labeled with SMI-32 contain the inhibitory marker Calb, 
we performed dual immunofluorescence. This stain-
ing revealed the co-localization of SMI-32 and Calb 
in pyramidal neurons in SG layer III in the oldest cases 
in both groups, while in the IG and SG layers, single 
Calb positive interneurons were observed intermingled 
with the SMI-32-ir pyramidal neurons in NTD and DS 
(Fig. 9C, D, G, H). By contrast, only single pyramidal and 
fusiform Calb, but not SMI-32 labeled cells were found 
in SG and IG layers in each group in the youngest cases 
(Fig. 9A, B, E, F).

Cell counts and demographic correlations
To determine whether there were differential associa-
tions between neurogenesis and neuronal differentiation 
during FC postnatal growth in DS and NTD, correla-
tions between neuronal counts for each cellular marker 
and demographic variables were performed and only the 
strongest are reported (Figs. 10, 11, 12, 13; Tables 4, 5, 6, 
7).       

In NTD, SG thionin counts positively correlated with 
SG (Spearman’s rank, r = 0.80, p = 0.006) and IG DCX-
ir counts (Spearman’s rank, r = 0.88, p = 0.0000002), 
and negatively with IG SMI-32 values (Spearman’s rank, 
r = − 0.82, p = 0.004), while IG thionin counts showed 
a positive correlation with IG DCX (Spearman’s rank, 
r = 0.83, p = 0.002) (Table  4). IG SMI-32-ir counts dis-
played a strong negative correlation with SG DCX 
(Spearman’s rank, r = − 0.90, p = 0.0000002), but weaker 
with IG DCX in NTD (Spearman’s rank, r = − 0.75, 
p = 0.016)  (Table  4). Thionin and DCX-ir cell counts 
in SG and IG showed a strong positive correlation with 
each other in NTD (Spearman’s rank, thionin r = 0.90, 
p = 0.0000002; DCX r = 0.88, p = 0.0000002) and in DS 
(Spearman’s rank, thionin r = 0.93, p = 0.0000002; DCX 
r = 0.96, p = 0.0000002) (Tables  4 and 5). SMI-32 and 
Calr-ir cell counts in SG and IG were positively correlated 
with each other in DS (Spearman’s rank, SMI-32 r = 1.0, 
p = 0.0000002; Calr r = 0.90, p = 0.0000002)  (Table  5), 
but not in NTD (Spearman’s rank, SMI-32 r = 0.67, 
p = 0.043; Calr r = 0.66, p = 0.043). Moreover, normalized 
IG DCX cell counts showed a strong negative correlation 
with normalized SG Calb and Calr cell counts in NTD 
(Table  4). In DS, normalized DCX, SMI-32 and Calr 
cell count correlations were similar to non-normalized 
counts (Table 5).

Age and brain weight displayed strong positive correla-
tions with IG SMI-32 cell counts (Spearman’s rank, age 
r = 0.91, p = 0.0000002; weight: r = 0.88 p = 0.0000002) 
(Table  6) but correlated negatively with SG (Spear-
man’s rank, age: r = − 1.0, p = 0.0000002; brain  weight, 
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Fig. 7  Boxplots showing significantly higher Calb-ir cell number in 
NTD (n = 9) compared to DS (n = 10) in both the SG and IG regions 
(Mann–Whitney rank sum test, SG p = 0.003; IG p = 0.024) (A), while 
Calr-ir counts were significantly higher in SG compared to IG in both 
NTD and DS (Wilcoxon signed rank test, NTD p = 0.016; DS p = 0.008) 
(B). *p < 0.05
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r = − 0.98, p = 0.0000002) (Fig.  10A, B; Table  6) and 
IG DCX cell counts (Spearman’s rank, age, r = − 0.88, 
p = 0.0000002; brain  weight r = − 0.87, p = 0.0000002) 
(Fig.  10C, D; Table  6), and weakly with SG thionin cell 
counts (Spearman’s rank, age: r = − 0.80, p = 0.0062; 
brain  weight: r = − 0.78, p = 0.009) in NTD (Fig.  10E, 
F; Table  6). In the DS group, age and brain weight cor-
related negatively with SG thionin neuronal counts 
(Spearman’s rank: age r = − 0.82, p = 0.0015; brain weight 
r = − 0.86, p = 0.0000002), whereas age was highly nega-
tively correlated with IG thionin cell number (Spear-
man’s rank, age r = − 0.84, p = 0.0000002; brain  weight 
r = − 0.77, p = 0.007) (Fig.  10G, H; Table  6). However, 
only brain weight showed a strong negative correlation 
with SG DCX values (Spearman’s rank, brain  weight 
r = − 0.91, p = 0.0000002; age r = − 0.82, p = 0.0015) in 
DS (Table  6). Finally, body weight and height displayed 
robust negative associations with SG (Spearman’s rank, 
body weight r = − 0.98, p = 0.0000002; height r = − 0.92, 
p = 0.0000002) (Fig.  11A, B; Table  6) and IG DCX-ir 
cell counts (Spearman’s rank, body weight r = − 0.90, 
p = 0.0000002; height r = − 0.85, p = 0.0004) (Table 6) in 
the NTD group. However, only body weight and DCX 
cell counts were significantly negatively correlated within 
SG (Spearman’s rank, r = − 0.78, p = 0.005), but not IG in 
DS (Table  6). In NTD, age, brain and body weight, and 
height showed negative correlations with normalized IG 
and SG DCX cell counts and positively correlated with 

normalized IG SMI-32 values (Table 6). Additionally, age, 
brain and body weight, and height correlated positively 
with normalized Calb cell numbers in the SG layers, 
while only age and body weight correlated with normal-
ized SG Calr counts in NTD (Table 6). In contrast, there 
were no significant correlations between age, brain and 
body weight, or height with any normalized cell counts in 
DS (Table 6).

Brain weight and age showed a stronger posi-
tive association in NTD (Spearman’s rank, r = 0.98, 
p = 0.0000002) compared to DS (Spearman’s rank, 
r = 0.90, p = 0.0000002) (Fig.  12A; Table  7). The asso-
ciation between  body weight and height was stronger 
in NTD (Spearman’s rank, r = 0.88, p = 0.0000002) 
compared to DS (Spearman’s rank, r = 0.69, p = 0.02) 
(Fig.  12B; Table  7). In addition, height and body weight 
displayed a  stronger correlation with brain weight and 
age in NTD (Spearman’s rank, r ≥ 0.90, p = 0.0000002) 
than in DS (Spearman’s rank, r = 0.73–0.85, p ≤ 0.02) 
(Fig. 12C–F; Table 7).

Discussion
The layered cerebral cortex results from a series of com-
plex harmonized events during prenatal and postna-
tal development. Consequently, projection and local 
neurons yield intricate neuronal architecture and con-
nectivity patterns that underlie the ability of humans to 
perform complex behavioral functions. Disturbances in 
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Fig. 9  Immunofluorescent images of FC SG and IG layers showing single Calb labeled cells (green) and SMI-32 (red) and dual Calb/SMI32 positive 
cells (reddish-orange) in 48 (A, B) and 174 (C, D) wk NTD and in 45 (E, F) and 196 (G, H) postnatal wk-old DS cases. Note that double labeled 
pyramidal Calb/SMI-32 positive cells (white arrows) were mainly observed in the SG layers in the oldest 174 wk NTD (C) and 196 wk DS (G) cases, 
but not in the youngest cases. Small single Calb-ir positive cells (yellow arrows) were seen in SG and IG layers in 174 wk NTD (C) and 196 wk DS (H), 
respectively. Blue nuclei were stained with DAPI. Scale bar = 50 µm
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cortical development lead to changes in motor, sensory, 
behavioral, and cognitive function in newborns, infants, 
children, and adolescents. DS is characterized by an array 
of cognitive difficulties starting early in life [27], which 
are attributed to deficits in cortical development includ-
ing cell proliferation and migration, apoptosis, neu-
rogenesis, synaptogenesis and gliogenesis [28, 32, 51], 
particularly in the FC. Although many of these processes 
have been studied during the fetal and prenatal stages of 
brain development in DS [5, 14, 28, 32, 42, 49, 69, 72, 86], 
there is a general lack of information on early postnatal 
brain maturation in DS. Here, we evaluated postnatal cel-
lular changes in the FC of infants and children with DS 
to gain greater insight into the effect of trisomy 21 upon 
cortical development that may provide clues to therapeu-
tic targets to prevent or slow cognitive disability in chil-
dren with DS.

Postnatal FC lamination and cytoarchitecture in DS
In this study, thionin histochemistry was used to inves-
tigate the postnatal maturation of different neuronal cell 
types within the layers of the FC in infants and children 
with DS compared to NTD. We found that lamination 
and cellular distribution in the FC was well-organized 
and distinguishable in all NTD cases examined, as previ-
ously described [61]. In contrast, in DS, cell layers were 
less well-defined and displayed poor cellular organiza-
tion [6]. In both groups, layers II and IV were distinct 
in premature infants (28 wk NTD; 31 wk DS), while in 
term newborns, layers II and IV were clearly observable 
in DS, but not in NTD, perhaps reflecting an abnormal 
distribution of the neurons and/or a greater delay in cell 
maturation in cortical layers II and IV [91]. Compara-
tively, cortical layers were less well-developed and more 
densely packed at all ages in DS. However, differences in 
cell number were not seen between the SG and IG lay-
ers between groups. In all cases the SG layers displayed 
a greater cellular density than the IG in both groups. 
In addition, we observed a delay in cellular maturation 
in the different cortical layers in DS compared to NTD 
cases. In fact, the thionin-stained pyramidal-shaped cells 
were first observed in layer V in a 28 wk-premature NTD 
infant, compared to at 44 wk in DS. Furthermore, in the 
oldest NTD subjects, cells in the SG and IG layers had a 
more classic pyramidal shape and were better organized 
than in the oldest DS. These findings support a previous 
study showing altered cortical lamination and reduced 
cellular proliferation in prenatal human cases with DS 
[13]. Together these findings indicate a spatiotemporal 
delay in FC organization and neuronal maturation, likely 
affecting cortical function early in DS.

Postnatal FC proliferation and neurogenesis in DS
During both prenatal and postnatal development, cells 
proliferate, migrate and differentiate within the FC [73, 
90]. These coordinated events are critical for the normal 
neuronal FC development. Cell proliferation is revealed 
by the nuclear human Ki-67 protein [77], which is seen 
during the active phases of the cell cycle but is absent in 
resting cells [20, 77]. In contrast to a previous report [68], 
we did not detect Ki-67 immunoreactivity in the post-
natal FC in NTD or DS subjects. Similarly, Ki-67 posi-
tive cells were not found in the postnatal hippocampus 
in NTD or DS [60]. The discrepancy between these may 
be related to the observation that proliferation markers, 
including Ki-67, show a steady and rapid postmortem 
decline at least in rats [79]. Whether this occurs in the 
human brain remains to be investigated.

The microtubule-associated protein DCX, a marker 
of neurogenesis that affects microtubule stabilization 
and cellular dynamics [4], is expressed in neuroblasts 
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and migrating neurons during embryonic and postnatal 
development of the central and peripheral nervous sys-
tems [26]. Here, DCX immunoreactivity was observed in 

the youngest NTD and DS infants (28 wk NTD; 31 wk 
DS). Although DCX-ir cells were observed in SG layer 
II, reactivity decreased with age in both NTD and DS. 
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Similar findings have been reported in the human cor-
tex where DCX was highly expressed soon after birth 
and declined dramatically in the first two years of life 
[24, 68]. In the postnatal rhesus monkey FC, DCX-ir cells 
were seen in layer II at 12 days and again at 1 month of 
age [24]. Although we found that an increase in age was 
associated with a decrease in DCX in both groups, posi-
tive cells decreased more rapidly in the postnatal DS 
compared to NTD cases. Furthermore, we demonstrated 
that the number of DCX-ir cells in the SG and IG layers 

correlated negatively with age, brain weight and height in 
NTD, but not in DS. These findings suggest that cortical 
neurogenesis is a time-dependent event strongly associ-
ated with body/brain growth that is downregulated early 
during postnatal development likely affecting connectiv-
ity, physiology and function of the FC in DS [9]. We did 
not detect differences between Ki-67 immunoreactiv-
ity compared to a decrease in DCX positive cells in both 
groups, suggesting that cell proliferation ceases prior to 
neurogenesis in the postnatal FC in both DS and NTD.

Table 4  Summary of the significant normalized and non-normalized thionin (TH), DCX, SMI-32, Calb and Calr cell count correlations in 
NTD

ns, not significant
a Spearman’s rank correlation coefficient (r)
b FDR: alpha < 0.02

NTD IG TH SG DCX IG DCX IG SMI IG DCX/IG TH IG SMI/IG TH SG Calb/SG TH SG Calr/SG TH

SG TH 0.90a

2 × 10−7b
0.80
0.006

0.88
2 × 10−7

− 0.82
0.004

ns ns ns ns

IG TH – ns 0.83
0.002

ns ns ns ns ns

SG DCX ns – 0.88
2 × 10−7

− 0.90
2 × 10−7

ns ns ns ns

IG DCX ns ns – − 0.75
0.016

ns ns ns ns

SG DCX/SG TH ns ns ns ns 0.950
2 × 10−7

− 0.83
0.002

− 0.83
0.002

− 078
0.009

IG DCX/IG TH ns ns ns ns – − 0.83
0.002

− 0.88
2 × 10−7

− 0.86
2 × 10−7

IG SMI/IG TH ns ns ns ns ns – 0.83
0.002

SG Calb/SG TH ns ns ns ns ns ns – 0.78
0.009

Table 5  Summary of significant normalized and non-normalized thionin (TH) DCX, SMI-32, Calb and Calr cell count correlations in DS

ns, not significant
a Spearman’s rank correlation coefficient (r)
b FDR: alpha < 0.006

DS IG TH IG DCX IG SMI IG Calr IG DCX/IG TH IG SMI/IG TH IG Calr/IG TH

SG TH 0.93a

2 × 10−7b
ns ns ns ns ns ns

SG DCX ns 0.96
2 × 10−7

ns ns ns ns ns

SG SMI ns ns 1.00
2 × 10−7

ns ns ns ns

SG Calr ns ns ns 0.90
2 × 10−7

ns ns ns

SG DCX/SG TH ns ns ns ns 0.95
2 × 10−7

ns ns

SG SMI/SG TH ns ns ns ns ns 1.0
2 × 10−7

ns

SG Calr/SG TH ns ns ns ns ns ns 0.82
0.00150
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Postnatal FC NHF reactivity in DS
Neurofilaments are cytoskeletal polymers that play an 
important role in the maintenance of large neurons with 
highly myelinated processes [67]. Here, we used the 

SMI-32 antibody that recognizes non-phosphorylated 
epitopes of the heavy-weight neurofilament proteins that 
are preferentially expressed in the dendrites and soma 
of mature pyramidal neurons [18, 36, 55, 66, 89]. We 
observed that most SMI-32-labeled large pyramidal neu-
rons were located in the IG layers (V-VI) as early as 28 
wk in NTD but much later (196 wk) in DS. SMI-32 posi-
tive pyramidal cells in layer III were observed at age 41 
wk in NTD, but not until age 196 wk in DS. Our results 
support the concept that maturation of layer V pyramidal 
neurons precedes their maturation in layer III in NTD 
[61], compared to delayed maturation of these large pro-
jection neurons in layers III and V in the FC in DS. The 
lack of NHF in the pyramidal cells in DS (present find-
ings) likely contributes to the smaller dendritic arboriza-
tion and fewer synapses reported in pyramidal neurons 
in the postnatal DS cortex [32]. We observed intense 
SMI-32 immunostaining of large pyramidal neurons in 
layer V in the oldest cases from both groups, supporting 
the concept that neurofilaments increase with cell size 
[89]. Interestingly, in the monkey cortex, SMI-32 is dif-
ferentially expressed in subpopulations of pyramidal cells 
in layer V, with the highest expression seen in pyrami-
dal cells that give rise to corticocortical projections [10]. 
Therefore, it is likely that the SMI-32 positive pyramidal 
cells found here belong to a population of corticocortical 
projection neurons. However, further studies are needed 

Table 6  Summary of significant normalized and non-normalized thionin (TH) DCX, SMI-32, Calb and Calr cell counts, age, brain and 
body weight and height correlations in DS and NTD

ns, not significant
a Spearman’s rank correlation coefficient (r)
b FDR: NTD alpha < 0.02 and DS alpha < 0.007

NTD Age Brain weight Body weight Height DS Age Brain weight Body weight Height

SG TH − 0.80a

0.006b
− 0.78
0.009

− 0.75
0.016

− 0.85
0.0004

− 0.82
0.0015

− 0.86
2 × 10−7

ns ns

IG TH ns ns ns ns − 0.84
2 × 10−7

− 0.77
0.007

ns ns

SG DCX − 1.00
2 × 10−7

− 0.98
2 × 10−7

− 0.98
2 × 10−7

− 0.92
2 × 10−7

ns − 0.91
2 × 10−7

− 0.78
0.005

ns

IG DCX − 0.88
2 × 10−7

− 0.87
2 × 10−7

− 0.90
2 × 10−7

− 0.85
0.0004

ns − 0.82
0.0015

ns ns

IG SMI-32 0.91
2 × 10−7

0.88
2 × 10−7

0.83
0.002

0.83
0.002

ns ns ns ns

SG DCX/SG TH − 0.97
2 × 10−7

− 0.95
2 × 10−7

− 0.98
2 × 10−7

− 0.85
0.0004

ns ns ns ns

IG DCX/IG TH − 0.97
2 × 10−7

− 0.95
2 × 10−7

− 0.98
2 × 10−7

− 0.85
0.0004

ns ns ns ns

IG SMI-32/IG TH 0.91
2 × 10−7

0.89
2 × 10−7

0.83
0.002

0.83
0.002

ns ns ns ns

SG Calb/SG TH 0.88
2 × 10−7

0.92
2 × 10−7

0.87
2 × 10−7

0.73
0.02

ns ns ns ns

SG Calr/SG TH 0.76
0.016

ns 0.82
0.004

ns ns ns ns ns

Table 7  Correlations between age, brain and body weight and 
height in DS and NTD

a Spearman’s rank correlation coefficient (r)
b p value

Age Brain weight Body weight Height

NTD

Age – 0.98a

2 × 10−7b
0.98
2 × 10−7

0.92
2 × 10−7

Brain weight – – 0.97
2 × 10−7

0.90
2 × 10−7

Body weight – – – 0.88
2 × 10−7

Height – – – –

DS

Age – 0.90
2 × 10−7

0.73
0.01

0.74
0.01

Brain weight – – 0.79
0.005

0.85
2 × 10−7

Body weight – – – 0.69
0.02

Height – – – –
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to investigate the developmental effects on pyramidal 
neurons and the influence on FC corticocortical connec-
tivity during development in DS. Moreover, SMI-32 posi-
tive pyramidal cell numbers in layer V showed a strong 
positive correlation with age, brain and body weight, and 
height in NTD. These findings suggest that brain matura-
tion and body growth are harmonized during postnatal 
development in NTD, but not in DS. Overall, maturation 
of FC pyramidal neurons is delayed in early postnatal 
development in DS and may underlie the impairment of 
executive function seen during childhood and adoles-
cence in DS.

Postnatal FC CBP in DS
The CBP  markers, Calb, Calr, and Parv, are present in 
GABAergic inhibitory cells that employ γ-aminobutyric 
acid [35]. During fetal human cortical development 
CBP-containing cells play a role in the establishment of 
transitory neuronal circuits, which are essential for the 
formation of mature neuronal circuits [88] through the 
mediation of cortical wiring, plasticity, and inhibitory 
neurotransmission [43]. In DS, it has been hypothesized 
that GABAergic dysfunction impairs synaptic plastic-
ity, learning and memory by altering the optimal balance 
between excitatory/inhibitory synapses [15].

In the present study, we detected Calb-ir profiles in 
the FC at all ages in both NTD and DS, similar to that 
reported in the hippocampus [60]. The presence of Calb-
ir cells at birth in the FC is similar to that reported in 
human postnatal entorhinal and visual cortex [29, 47] 
as well as the rodent neocortex [1]. These data suggest 
that Calb FC circuits develop early in life and continue 
throughout the postnatal period. While the first Calb-ir 
cells in the FC were observed at 28 wk in a premature 
NTD infant [88], only neuropil staining was detected in 
premature infants with DS (present findings). Calb-ir 
positive neurons in SG and IG layers were seen at 41 wk 
of age in NTD and at 44 wk in infants with DS. Compara-
tively, these Calb immunolabeled cells are smaller with 
less distinctive processes in DS, even in the oldest cases, 
indicative of a developmental delay of these interneurons 
early in the postnatal DS cortex. Moreover, we found that 
Calb-ir cell numbers were significantly lower in both the 
SG and IG layers in DS compared to NTD. Normalized 
Calb-ir cell counts correlated positively with age, brain 
and body weight, and height in NTD, but not in DS. Sim-
ilar to our postnatal findings, Calb-ir non-pyramidal neu-
rons were greatly reduced in the FC in elderly DS [41]. 
However, it is unknown whether Calb-ir cell numbers in 
the FC are consistently lower throughout life in DS.

Unlike Calb, we detected Calr-ir cells as early as 
32 wk in DS compared to 44 wk in NTD. These cells 
were mainly observed in layers II/III in both groups, 

comparable to that seen in the human postnatal entorhi-
nal cortex [29] in NTD subjects. Calr-ir cells were more 
numerous in both SG and IG layers in DS compared to 
NTD, similar to our previous findings in the postnatal 
hippocampus in DS and NTD [60]. However, a previous 
study using human-derived euploid induced pluripotent 
stem cells (iPSCs) showed that, in DS, there were signifi-
cantly fewer Calr-ir interneurons compared to non-DS 
models [37]. This iPSC study suggested that DS GABAe-
rgic interneurons, including Calr positive cells, exhibit 
decreased migration in  vitro during development [37]. 
These discrepancies in cortical Calr numbers may be 
related to the comparison between examining human 
DS tissue in the present study and the forced induction 
of neuronal phenotypes in in vitro models of DS. Despite 
higher numbers of cortical Calr positive cells exhibited in 
postnatal DS cases, we found strong positive associations 
between normalized Calr positive cell counts in the SG 
and IG with age, brain and body weight, and height in the 
NTD group, but not in DS.

Parv-ir cells in the FC were first observed in the IG layer 
at 196 wk in DS, but not at 174 wk in NTD. Conversely, 
no Parv-ir cells were detected in the postnatal hippocam-
pus at any age in either DS or NTD [60]. Moreover, Parv-
ir cells were found to be absent at birth in the human 
entorhinal and visual cortex in neurotypical babies, but 
present later during the postnatal period [29, 47]. Even 
though a reduction in the number of Parv-ir interneu-
rons was reported in the cerebral cortex in elderly people 
with DS [41], further investigation on FC neuronal Parv 
differentiation in the postnatal period is required. Taken 
together, these data support the hypothesis that GABAe-
rgic neuronal dysfunction plays a role in cortical circuit 
development, leading to intellectual disability early in life 
in DS, which extends to adulthood [94]. While numerous 
studies have demonstrated that GABAergic drugs rescue 
behavioral deficits in animal models of DS [21, 53, 74], 
clinical trials targeting GABAergic signaling have failed 
to meet their primary cognitive endpoints in patients 
with DS [44]. More research is needed to better under-
stand the role of GABAergic neuronal dysfunction as a 
therapeutic target to treat cognitive impairment in DS.

Postnatal FC APP and Aβ1–42 in DS
APP is a transmembrane protein highly expressed in 
the FC [65] and plays a role in cellular growth, cellular 
differentiation, cell–cell communication and synaptic 
plasticity throughout life [63, 65]. In pathological con-
ditions, the proteolysis of APP generates Aβ peptides, 
which accumulate to form Aβ plaques, a hallmark of 
Alzheimer’s disease (AD) [65]. In DS, the gene for APP 
is triplicated, due to the presence of an extra full or par-
tial chromosome 21, leading to increased production of 
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toxic Aβ1–42 [8] and amyloid plaque deposition beginning 
as early as the late teens [17, 45, 85]. We detected diffuse 
plaque-like APP/Aβ-ir accumulations scattered through-
out all layers of the FC in both DS and NTD cases. How-
ever, no Aβ1–42 immunoreactivity was detected in any 
case examined. Similar findings have been reported in 
the postnatal hippocampus in DS and NTD [60]. In DS, 
Aβ soluble species, which precede plaque deposition, 
have been reported as early as 21 gestational wk [30, 32]. 
A prior study reported no amyloid plaque pathology at 
0.01, 1.6 and 3 months of age in the frontal and tempo-
ral cortex or brainstem in DS [17]. High expression of 
certain isoforms of APP occurs in cortex at birth and at 
postnatal day 10 in rats, suggesting a role in the postna-
tal regulation of cellular growth and synaptogenesis [3]. 
Interestingly APP mRNA and protein levels increased 
two-fold over the course of neuronal differentiation in a 
DS isogenic human model [67]. Since we did not detect 
Aβ1–42 immunostaining in the FC, we suggest that the 
diffuse plaque-like accumulations reported here contain 
non-pathological APP or derivatives of this protein in 
both NTD and DS. Although several studies have dem-
onstrated that overexpression of cortical APP, S100B, and 
OLIG2 impair proliferation/neurogenesis in the fetal DS 
brain [49, 50], the effect that the overexpression of APP 
alone or in conjunction with other genes located on chro-
mosome 21 (e.g., S100B, DYRK1A, RCAN1, OLIG1/2, 
SOD1) has upon FC postnatal maturation requires fur-
ther investigation [7, 59].

Postnatal FC Tau in DS
Along with Aβ plaques, the other classic pathologi-
cal hallmark of AD, NFTs, are composed of phospho-
rylated tau [56]. The normal biological function of tau 
is the assembly and stabilization of microtubules to 
regulate neuritic growth [39]. Hyper-phosphorylation 
of tau results in the loss of physiological function and 
its aggregation in select brain regions, which contrib-
utes to learning and memory impairments reported 
in various tauopathies [54, 56]. NFTs develop by the 
forties and are linked to the cognitive impairment in 
DS [34, 52, 70, 71]. The shortest tau isoform is highly 
expressed throughout fetal development, but particu-
larly during midgestation [39]. The normal biological 
function of tau involves the assembly and stabilization 
of microtubules to regulate neuritic growth [39]. Phos-
phorylation of fetal tau occurs in the distal portion of 
growing axons, which is downregulated after 35 wk 
gestation [39]. Different abnormal tau phosphorylation 
events during fetal development (14–28 wk gestation) 
have been investigated using tau epitope-specific anti-
bodies revealing tau positive white matter tracts (e.g., 
cerebellar peduncles and internal capsule) [56, 57, 80] 

suggesting early axonal transport defects, a common 
feature in tauopathies [80]. Interestingly, we reported 
a band of phosphorylated CP13 (Ser202) and PHF-1 
(Ser396) tau immunoreactivity located between the 
external granular (or germinal) and molecular lay-
ers of the cerebellum during early postnatal develop-
ment [62]. Our findings of phosphorylated tau CP13 in 
postnatal FC layer I, but not PHF-1, in younger NTD 
and DS cases, suggests the expression of an early non-
pathological form of tau [39, 93]. In a previous study, 
we did not detect CP13 immunostaining during post-
natal development of the hippocampus in either DS or 
NTD [60]. A recent imaging study using the tau trac-
ers 3H-THK5117 and 3H-MK6240 demonstrated bind-
ing in the DS fetal cortex, but not in control cases [46]. 
Although the functional significance of cortical tau 
remains unclear in DS, it may affect synaptic formation, 
neuronal sprouting or pruning during development 
[34].

Relationship between FC neuronal profiles and biometrics
Brain growth during the prenatal and postnatal peri-
ods is a reflection of cell proliferation and migration, as 
well as neuronal, soma, axonal, and dendritic growth, 
synaptogenesis, glial cell proliferation, and myelina-
tion. Although we did not see significant differences 
in brain weight and age between groups, correlations 
were weaker in DS than in NTD, where brain growth is 
slower in DS than in NTD [76]. Body height and weight 
were strongly associated with age and brain weight 
in NTD, but weakly in DS. Brain weight and age cor-
related more strongly with thionin, DCX, and SMI-32 
cell counts in NTD compared to DS. Similarly, we pre-
viously reported a strong negative correlation between 
dentate gyrus DCX cell counts and brain weight in DS 
compared to NTD [60]. Body height and weight were 
negatively correlated with cell counts for the neuronal 
migration marker DCX in NTD, but not in DS. Alto-
gether these data indicate that neurogenesis at postna-
tal ages follows a coordinated timeline with brain/body 
growth that is impaired during postnatal FC develop-
ment, similar to the hippocampus [60] in DS.

Study limitations
There are limitations to our study. In this regard, vary-
ing degrees of functional impairment exist in individuals 
with DS suggesting the existence of differences in fetal/
early neuronal developmental abnormalities between 
individuals/infants with this syndrome. Variable post-
mortem intervals across cases may affect tissue quality. 
Since there were limited cases examined at each age/
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stage, the present findings should be interpreted with 
caution and confirmed in a larger cohort. This caveat is 
due to an inadequate number of brain banks that col-
lect human DS and NTD postmortem tissue at all ages. 
To assist in this endeavor, we established the Down Syn-
drome BioBank Consortium (http://​devdo​wnsbio.​wpeng​
ine.​com/​famil​ies-​donors/​brain-​donat​ion-​regis​try/) 
funded by the BrightFocus Foundation.

Summary and conclusions
In sum, the postnatal FC displays a spatiotemporal delay 
in lamination, poor cellular organization and delayed 
neuronal differentiation in DS. DCX-ir cells declined 
with age in both NTD and DS, however they decreased 
more rapidly in DS. SMI-32-ir cells were detected in 
NTD much earlier than DS, in which SMI-32 was only 
detected at 196 wk. In NTD, the maturation of SMI-32-ir 
pyramidal neurons in layer V preceded layer III, however 
DS pyramidal neuronal maturation was simultaneously 
delayed in layers III and V. Calb-ir cell numbers were 
significantly higher in NTD. Calb-ir neurons were first 
seen at 41 wk NTD compared to 44 wk in DS, and DS 
Calb-ir interneurons displayed morphological defects. 
Calr-ir cells were observed as early as 32 wk in DS com-
pared to 44 wk in NTD and were more numerous across 
all cortical layers in DS. Parv immunoreactivity was only 
detected in the IG layer at 196 wk in DS. DCX-ir, Calb-
ir, and Calr-ir cell numbers were positively correlated 
with age, brain/body weight, and height in NTD, but not 
in DS. APP/Aβ-ir diffuse accumulations were detected 
in all layers of the FC in both DS and NTD cases, how-
ever Aβ1–42 plaques/accumulations were not detected 
in any sample. Phosphorylated tau CP13 was seen in 
layer I, but not PHF-1, at 41 wk and 33 wk in NTD and 
DS, respectively. These findings suggest that trisomy of 
chromosome 21 affects spatiotemporal postnatal devel-
opment of FC lamination, neuronal migration/neuro-
genesis, differentiation and phenotypic maturation of 
projection pyramidal cells and interneurons (see Fig. 13), 
which contribute to the impaired cognition seen in this 
developmental disorder. The effect(s) that alterations 
to the neuronal substrate of the FC has upon behavior 
in DS remains an intriguing area of research. Function-
ally, children with DS show impairments in episodic and 
executive function, working memory and attention [92] 
mediated, in part, by the FC. It is well established that 
individuals with DS display a shrunken FC [62] and that 
preterm and term infants and children with this disorder 
exhibit a reduction in frontal lobe functional connectiv-
ity [38,  92] suggesting that impairment of cortical con-
nectivity is a core mechanism(s) underlying cognitive 
impairment(s) for people with DS. In addition, phospho-
tau CP13, but not PHF-1, was seen in FC postnatal layer 

I in both young NTD and DS cases. Although the precise 
functional significance that postnatal tau has upon neu-
ronal organization remains unknown, it may also affect 
cognitive and attentional behavior(s) throughout the 
lifespan of individuals with DS [34].
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