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Abstract 

Introduction:  Neutrophil accumulation is a well-established feature of Alzheimer’s disease (AD) and has been linked 
to cognitive impairment by modulating disease-relevant neuroinflammatory and vascular pathways. Neutrophils 
express high levels of the oxidant-generating enzyme myeloperoxidase (MPO), however there has been controversy 
regarding the cellular source and localisation of MPO in the AD brain.

Materials and methods:  We used immunostaining and immunoassays to quantify the accumulation of neutrophils 
in human AD tissue microarrays and in the brains of APP/PS1 mice. We also used multiplexed immunolabelling to 
define the presence of NETs in AD.

Results:  There was an increase in neutrophils in AD brains as well as in the murine APP/PS1 model of AD. Indeed,  
MPO expression was almost exclusively confined to S100A8-positive neutrophils in both human AD and murine APP/
PS1 brains. The vascular localisation of neutrophils in both human AD and mouse models of AD was striking and 
driven by enhanced neutrophil adhesion to small vessels. We also observed rare infiltrating neutrophils and deposits 
of MPO around plaques. Citrullinated histone H3, a marker of neutrophil extracellular traps (NETs), was also detected 
in human AD cases at these sites, indicating the presence of extracellular MPO in the vasculature. Finally, there was a 
reduction in the endothelial glycocalyx in AD that may be responsible for non-productive neutrophil adhesion to the 
vasculature.

Conclusion:  Our report indicates that vascular changes may drive neutrophil adhesion and NETosis, and that 
neutrophil-derived MPO may lead to vascular oxidative stress and be a relevant therapeutic target in AD.
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Background
Neutrophils are the most abundant circulating leukocyte, 
and they play a critical role as first responders to inflam-
mation [1]. However, there is now a growing apprecia-
tion for the role that neutrophils play in chronic diseases 
[2]. Indeed, neutrophils may have differential roles in the 
contexts of acute and chronic inflammation [2]. Most 
evidence from acute inflammation suggests that they 
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are beneficial, especially in containing infection, while in 
chronic sterile inflammation evidence suggests that off-
target effects of neutrophil activation can contribute to 
tissue damage [2].

Alzheimer’s disease (AD) is a neurodegenerative dis-
ease characterised by the accumulation of amyloid 
plaques and tangles of hyperphosphorylated tau [3]. 
Interestingly, AD has a chronic neuroinflammatory 
component that drives neurodegeneration [4–6], and 
cerebrovascular inflammation is important in recruit-
ing peripheral immune cells in other neuroinflammatory 
diseases [7, 8]. Neutrophil accumulation in AD has been 
well documented [9–12], but recent reports also indicate 
that neutrophils contribute to pathology and cognitive 
impairment in AD [9, 11–13], consistent with the idea 
that they play a deleterious role in chronic diseases [2]. 
Indeed, there is an amyloid-independent improvement 
in cognition in mouse AD models when neutrophils are 
depleted or when interactions between neutrophils and 
cell adhesion molecules in blood vessels are blocked [9, 
11, 12]. There have been reports of both neutrophil infil-
tration [10, 11] and vascular localisation [12, 13], and 
recent studies have indicated that neutrophil plugging of 
capillaries reduces cerebral blood flow in both the APP/
PS1 and  5XFAD models of AD to drive cognitive defi-
cits [12, 13], although the localisation of neutrophils in 
human Alzheimer brains has not been analysed in any 
detail.

In order to infiltrate the brain, neutrophils must pass 
across the blood brain barrier (BBB), formed by brain 
endothelial cells. Under normal circumstances, circulat-
ing neutrophils flow through cerebral vessels. However, 
following an injury, inflammation triggers the expression 
of chemokines and adhesion molecules in cerebral vessels 
that recruit and promote the attachment of neutrophils 
to the vessel wall [14, 15]. Concurrently, the glycocalyx, 
a proteoglycan structure that prevents the interaction 
of surface molecules such as cell adhesion molecules, 
collapses, facilitating neutrophil attachment [16]. Once 
adhered to the vasculature, the interaction of endothe-
lial membrane protrusions, containing multiple adhesion 
molecules, facilitate the migration of immune cells into 
the brain parenchyma [17].

The neutrophil oxidant-producing enzyme myelop-
eroxidase (MPO) has also been suggested to play a role 
in AD [9, 12, 18–21]. Adoptive transfer of bone mar-
row from Mpo−/− to 5XFAD mice reduces neuroinflam-
mation, indicating a role for MPO-derived oxidants in 
AD-associated neuroinflammation [9]. While there is a 
consensus that MPO abundance is increased in AD, there 
are conflicting reports regarding its localisation and cel-
lular source. MPO has been reported to localise to amy-
loid plaques [18, 20] and tau tangles [19], while the brain 

cells that have been reported to produce MPO include 
neurons [19], astrocytes [20], and microglia [19], as well 
as neutrophils [11]. The localisation and source of MPO 
has a profound impact on the targets of MPO-derived 
oxidants [22], especially because the major oxidant pro-
duced, hypochlorous acid (HOCl), is extremely reactive 
and has a limited diffusion radius [23].

In neutrophils, MPO is contained within cytoplas-
mic granules, and degranulation must occur before the 
enzyme is fully active. One way of enabling MPO release 
is the formation of neutrophil extracellular traps (NETs) 
in which mixing of chromatin and granule contents 
occurs, before the NET is expelled [24]. Once released, 
NETs are powerful activators of the immune response, 
forming a DNA–protein matrix decorated with dam-
age-associated molecular patterns such as S100 proteins 
[25–27]. While infectious agents trigger NET formation 
[28], they have also been reported in sterile inflammatory 
diseases, including atherosclerosis and gall-stone forma-
tion [24, 29, 30]. There have been preliminary reports of 
NETosis in AD [11], however the abundance and localisa-
tion of the NETs have not yet been characterised.

We set out to investigate the accumulation and locali-
sation of neutrophils in AD, as well as the source and dis-
tribution of MPO. We confirmed that there is neutrophil 
accumulation in AD, and demonstrated using a panel of 
antibodies that MPO was almost exclusively localised 
with other neutrophil markers. Strikingly, neutrophils 
accumulated throughout the vasculature in the AD brain, 
but only limited infiltration observed. We also observed 
rare deposits of MPO outside the vasculature, which 
were associated with plaques. To test whether plaque-
associated MPO was present as NETs, we used a panel 
of antibodies to stain for potential NETosis, and while we 
did observe specific NET labelling these were only found 
in the vasculature. We also observed that there was a loss 
of endothelial glycocalyx staining in the AD vasculature, 
which may drive enhanced neutrophil-vascular interac-
tions in AD.

Materials and methods
Human tissue
All post-mortem human brain tissue used in this study 
was obtained from the Neurological Foundation of New 
Zealand Human Brain Bank in the Centre for Brain 
Research, University of Auckland. All protocols in this 
study were approved by the University of Auckland 
Human Participants Ethics Committee (2008/279 and 
011,654), and all families provided informed consent. All 
cases were examined by an independent neuropatholo-
gist and were classified based on neurological abnor-
malities, or lack thereof in neurologically normal control 
cases (Additional  file 1: Table  S1). Tissue microarrays 
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of AD and control tissue were generated from paraffin-
embedded blocks as described previously [31, 32].

Animal models
APP/PS1 transgenic mice
APP/PS1 transgenic mice on a C57BL/6  J back-
ground were bred at Otago University, New Zealand, 
from stock imported from the Jackson Laboratory 
((APPswe,PSEN1dE9)85Dbo, MMRRC stock No: 34832-
JAX). Non-litter matched transgenic (n = 12) and wild-
type (n = 12) male mice were obtained by breeding 
hemizygous males with wild-type females. Animals were 
single group-housed in standard caging on a 12-h light/
dark cycle, and food and water were available ad libitum. 
Ethical approval for the mouse work was obtained from 
the University of Otago Animal Ethics Committee (AUP-
19–82). Mice were euthanised by transcardial perfusion 
with saline followed by 4% paraformaldehyde (PFA) at 4 
and 12 months of age, and tissue fixed by perfusion in 4% 
paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB) 
for 1  day, followed by 30% sucrose in PB for 2  days. In 
all experiments, male mice were used. Brains were stored 
in optimal cooling temperature mounting medium and 
were sectioned in the sagittal plane (40  μm thickness). 
Sections were stored in cryoprotectant solution contain-
ing 30% sucrose and 30% ethylene glycol in PB at – 20 °C 
for later use.

Stroke
All procedures were performed in accordance with the 
guidelines on the care and use of laboratory animals set 
out by the University of Otago, Animal Research Com-
mittee (AUP-19–160). Focal stroke was induced by pho-
tothrombosis in adult male C57BL/6 J mice (3–4 months, 
27–30 g) as previously described [33–35]. Under isoflu-
rane anaesthesia (4% induction, 2–2.5% maintenance in 
O2) mice were placed in a stereotactic frame (9000RR-B-
U, KOPF; CA, USA), and buprenorphine hydrochloride 
(0.1 mL of a 0.5 mg/kg solution, Temgesic.) was admin-
istered subcutaneously as pre-emptive post-surgical 
pain relief. Following sterilisation of the skin using chlo-
rhexidine (30% in 70% ethanol, Hibitane), the skull was 
exposed through a midline incision, cleared of connective 
tissue and dried. A cold light source (KL1500 LCD, Zeiss, 
Auckland, New Zealand) attached to a 40 × objective 
providing a 2-mm diameter illumination was positioned 
1.5 mm lateral from bregma. Then, 0.2 mL of Rose Bengal 
(Sigma-Aldrich; 10 mg/mL in sterile saline) was adminis-
tered i.p.. After 5 min, the brain was illuminated through 
the exposed intact skull for 15 min, while keeping body 
temperature at 37  °C using a heating pad. The skin was 
glued, and animals left in a cage placed on a heating pad 
until they had recovered before being returned to their 

home-cage. Sham surgery was performed in the exact 
same way, except saline was injected instead of Rose Ben-
gal. Mice were housed in groups of three to five under 
standard conditions in individually ventilated cages (IVC: 
Tecniplast: maintained at 21  °C ± 2  °C and humidity of 
50% ± 10%), on a reverse 12  h light/dark cycle (white 
lights off from 07:00–19:00) with ad  libitum access to 
food and water. Following stroke or sham surgery, ani-
mals were euthanised 1-, 3-, and 14-days post stroke 
(n = 6), with sham controls taken at 1 and 14 days (n = 3). 
Brains were fixed and embedded in paraffin blocks for 
sectioning.

Immunohistochemistry
Paraffin‑embedded tissue
Formalin-fixed paraffin embedded sections (7 μm thick-
ness) were dewaxed in xylene for at least 1  h, followed 
by rehydration through an alcohol series. Heat-induced 
epitope retrieval was performed in tris–EDTA (10  mM 
tris–HCl, 1  mM EDTA, 0.05% Tween-20 (v/v), pH 9.0) 
using a pressure cooker. For the detection of amyloid-β 
and phospho-tau, antigen retrieval was performed in 80% 
formic acid for 3  min. Once sections were cooled and 
washed, they were blocked in 10% normal donkey serum 
(NDS) for 1 h. Primary antibodies, diluted appropriately 
(in 1% NDS in phosphate-buffered saline (PBS)), were 
added to sections overnight at 4  °C (antibody details in 
table S2). Primaries were removed, and sections washed 
in PBS, before appropriate species-specific second-
ary antibodies with Hoechst 33,342 (50  μg/mL; Ther-
moFisher, OR, USA) or DAPI (500 ng/mL; ThermoFisher) 
were added (in 1% NDS in PBS) for 4  h at room tem-
perature. Coverslips were mounted onto sections with 
Prolong Gold antifade mountant (ThermoFisher) before 
imaging. Large human sections were imaged on a Nikon 
Eclipse Ni microscope (20 × objective, NA 0.50; Nikon, 
Japan) with large regions acquired by tiling. Mouse sec-
tions were acquired using a Zeiss Axio Imager (20X 
objective, NA 0.5; Carl Zeiss, Germany) with Apotome-
based deconvolution.

Massively multiplexed immunostaining
Using a protocol adapted from Maric et al. [36] and Mur-
ray et al. [37], paraffin-embedded tissue microarray sec-
tions of AD and normal middle temporal gyrus were 
processed as above. Imaging was carried out with an 
automated fluorescence microscope (Zeiss Z2 Axioim-
ager) equipped with MetaSystems VSlide slide scanner 
(MetaSystems) running MetaFer (V 3.12.1) with a 20 × air 
objective (0.9 NA). This microscope is equipped with 
6 custom excitation/dichroic/emission filter sets opti-
mised for spectral separation of compatible fluorophores 
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as previously described (Maric et  al. [36]). Antibodies 
were then stripped from sections with the addition of 5X 
NewBlot™ Nitro Stripping Buffer (Li-Cor, NE, USA) for 
10 min at room temperature. Sections were then washed 
in PBS, epitope retrieval performed where necessary, and 
a subsequent round of immunostaining and imaging per-
formed as above. This was completed over four rounds. 
Alignment of images from all four rounds was performed 
using a custom Python script [38]. We confirmed the 
effectiveness of stripping at removing previous antibod-
ies in Additional file 1: Figure S5.

Neutrophil isolation
Venous blood was collected from healthy donors with 
informed consent under the ethical approval of the 
Southern Health and Disability Ethics Committee (Wel-
lington, New Zealand [URA/06/12/083]). Neutrophils 
were isolated as previously described [39]. Briefly, dex-
tran (1% (w/v)) sedimentation was followed by Ficoll 
density centrifugation, then hypotonic lysis to remove 
remaining red blood cells. Granulocytes were suspended 
in RPMI-1640 (Gibco, CA, USA) containing 2% FBS plus 
10  mM HEPES. Purity was assessed by flow cytometry, 
and cultures were routinely > 98% pure. Where relevant, 
serum was obtained from blood collected without antico-
agulant and left to clot at room temperature. The clot was 
pelleted (1200×g; 2  min) and the serum was collected 
and stored on ice until required.

Amyloid‑β preparation
Lyophilised Aβ1-42 (H1368, Bachem) peptide was resus-
pended in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP; 
105,228, Sigma) to 1  mM through the rubber septum 
using a 2.5  mL glass Hamilton syringe with a Teflon 
plunger and sharp needle and allowed to sit at room tem-
perature for 30 min. Aβ1-42-HFIP solution was aliquoted 
into single-use lo-bind Eppendorf tubes and allowed to 
sit overnight in a fume hood to evaporate HFIP. To ensure 
complete removal, tubes were transferred to a SpeedVac 
and dried for 1 h at room temperature. The resulting pep-
tide films were stored at – 20  °C until use. To generate 
a monomeric preparation of Aβ1-42 the peptide film was 
allowed to come to room temperature, diluted to 5 mM 
in DMSO and sonicated for 10 min in a bath sonicator at 
room temperature. Aβ1-42 was further diluted in phenol-
red free DMEM (Gibco) to 100 μM and used immediately 
for the monomeric preparation. To generate oligomers, 
the monomeric preparation method was used, however, 
the resulting Aβ1-42 preparation was incubated at 4  °C 
for 24 h prior to use. To generate fibrils, the Aβ1-42 solu-
tion was diluted to 100 μM in 10 mM HCl and incubated 
at 37  °C for 24  h prior to use. To generate aggregates, 

Aβ1-42 was resuspended in sterile water at 500 µM, vor-
texed thoroughly, and stored in aliquots at – 20 °C. In all 
instances Aβ1-42 was diluted to a final concentration of 
1 µM in culture media.

ELISA
MPO
Myeloperoxidase abundance and activity was measured 
in clarified brain tissue lysates from the entorhinal cor-
tex. Brain samples that had been snap frozen at -80  °C 
were placed in lysis buffer (25  mM Tris–HCl pH 7.5, 
150  mM NaCl, 50  mM NaF, 0.5  mM EDTA pH 8, 0.5% 
Triton-X 100™, 5  mM β-glycerophosphate, with fresh 
1  mM DTT, 1  mM PMSF, 1  mM Na3VO4) with 1  mm 
stainless steel beads and homogenised with a bead beater. 
The lysate was then spun at 14 000 × g for 20  min, and 
the supernatant containing soluble protein taken. Sam-
ples were normalised to protein content in diluent (1% 
(w/v) bovine serum albumin (BSA) in PBS with 0.05% 
Tween-20 (v/v)). A high-binding 96 well plate was then 
coated in a mouse anti-MPO capture antibody (1:500 in 
PBS; clone 4A4, ThermoFisher) overnight at 4 °C. The fol-
lowing day, wells were blocked in diluent for 1 h at room 
temperature. Samples were added alongside an 8-point 
standard curve (0.7 – 50  ng/mL) of purified MPO, and 
left for 1 h at room temperature. AmplexRed assay buffer 
(50 μM AmplexRed, ThermoFisher; in 50 mM phosphate 
buffer with 50 mM NaBr and 20 μM H2O2) was added for 
15  min, and fluorescence (ex 530  nm, Em 590  nm) was 
measured on a Synergy Neo2 HTS plate reader (BioTek, 
VT, USA). A rabbit polyclonal antibody to MPO (1:800 
in diluent) was then added overnight at 4 °C. Biotinylated 
goat anti-rabbit secondary antibody (1:2000; Sigma, MO, 
USA) was added for 1  h at 37  °C, followed by ExtrAvi-
din alkaline phosphatase (1:1000; Sigma) for 1 h at room 
temperature. The alkaline phosphatase activity of samples 
was then measured from the conversion of p-nitrophenyl 
phosphate, with absorbance measured at 405 nm using a 
VarioSkan™ LUX microplate reader (ThermoFisher).

Calprotectin
The abundance of calprotectin was measured in samples 
using the commercially available CALPRO ELISA kit 
(Svar, Sweden) as per manufacturer’s instructions.

Sytox green NETosis assay
Acutely isolated neutrophils were seeded in RPMI-1640 
with 2% FBS and 5 μM Sytox Green (ThermoFisher) at 
100 000 cells/well in a 96 well plate. A control where 
Sytox Green was absent was included for background 
subtraction. Neutrophils stimulated with phorbol 
12-myristate 13-acetate (20  nM, PMA; Sigma) were 



Page 5 of 17Smyth et al. Acta Neuropathologica Communications           (2022) 10:38 	

used as a positive control. Neutrophils were treated 
with amyloid-β1-42 (1 μM, Aβ1-42), with 10% (v/v) autol-
ogous donor serum, the monoclonal antibody against 
Aβ1-42 4G8 (10 ng/mL), or vehicle (0.01% DMSO). Fluo-
rescence (ex 460 nm, Em 516 nm) was measured every 
5 min on a Synergy Neo2 HTS plate reader (BioTek, VT, 
USA).

Thioflavin T assay
Freshly prepared Aβ1-42 species or vehicles were added to 
PBS containing 20 mM thioflavin T (ThT). Samples were 
left at 37  °C for 1  h, then fluorescence (ex 440  nm, em 
492  nm) measured with a VarioSkan™ LUX microplate 
reader.

Negative‑stain transmission electron microscopy
Copper grids with 300 meshes coated with formvar/car-
bon film (ProSciTech, Australia) were floated on a 5  μl 
drop of a 50  µM Aβ1-42 protein sample and incubated 
for 60  s. Grids were washed once with water, and then 
floated on 5  μl of uranyl acetate solution (2% w/v) for 
30 s. Micrographs were taken on a Philips CM200 200 kV 
transmission electron microscope equipped with a Gatan 
digital camera.

Image analysis
All automated image analysis was performed on Cell-
Profiler (v4.0.7) using custom pipelines. The experiment-
ers were blinded to the genotype and pathology of the 
patients in all cases.

Neutrophil and NET abundance
Neutrophils were thresholded based on intense staining 
for MPO and S100A8 following rolling ball background 
subtraction and smoothing. Large objects were excluded. 
NETs were identified as being positive for CitH3, S100A8, 
and MPO. A lectin mask was used to determine their 
localisation as vascular.

Lectin intensity
A low all-vessel threshold was performed following 
rolling ball background subtraction to include mid 
and low intensity vessels. Alternatively, collagen IV-
positive vessels were identified with a high threshold. 
Large and small objects were filtered out. The size of 
objects was measured and segregated into ‘large’ and 
‘small’ vessels based on the minor axis length cut-off of 
12 μm (lectin) or 15 μm (collagen IV). The mean inten-
sity within the large vessel and small vessel objects was 
then measured.

MPO colocalisation/association
MPO, S100A8, amyloid-β, and pTau positive structures 
were thresholded following rolling ball background sub-
traction. Objects that were touching were considered 
colocalised/associated.

Vascular vs extravascular MPO
A low all-vessel threshold was performed as above and 
dilated, then the MPO image masked by this. MPO-posi-
tive objects were then identified in the masked area (vas-
culature) and the unmasked area (parenchyma).

Yang et al. database [40]
Single-nuclear RNA-seq counts from the human AD vas-
culature were obtained from https://​twc-​stanf​ord.​shiny​
apps.​io/​human_​bbb/.

Data analysis
Data were analysed with GraphPad Prism (v 9.01). Data 
from larger TMA cohorts are presented as box-and-
whisker, with the range, interquartile range, and median 
presented. Where outlier values were detected (> 2 
SD outside the mean), staining quality was inspected 
to ensure the validity of results and if artefacts were 
detected, the outlier was removed. Otherwise, the 
value was included. All other data are presented as 
mean ± standard error of mean. Appropriate statistical 
tests were carried out, following a test of the normality 
of data. Briefly, t-tests were performed where there were 
two groups, and two-way ANOVA where there were two 
factors. Multiple comparisons were performed with Tuk-
ey’s post-hoc test.

Results
Neutrophils accumulate in the human AD brain and APP/
PS1 mouse model of AD
We initially used tissue microarrays to measure the 
accumulation of neutrophils in the human AD brain 
using a range of markers including three antibod-
ies against MPO, as well as antibodies against CD66B, 
and S100A8. For all of these markers, small spherical 
cells were observed, with little apparently glial or neu-
ronal immunoreactivity, indicating that, as expected, 
they were detecting neutrophils (Fig.  1a-e). Addi-
tionally, cells stained for these antibodies had poly-
morphic nuclei, indicating that the cells they stained 
were indeed neutrophils (Additional file  1: Fig. S1). 
We found that there was a consistent increase in the 
abundance of these neutrophils within AD brains, as 
measured by all MPO antibodies, as well as antibodies 
against S100A8 and CD66B (Fig. 1a-e). Although other 

https://twc-stanford.shinyapps.io/human_bbb/
https://twc-stanford.shinyapps.io/human_bbb/
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studies have detected S100A8 in other cell types [41], 
in our hands it was a reliable marker for neutrophils. 
In order to stain murine AD model brains, we tested a 
range of antibodies but found that only AF3667 gave 
specific signal in positive control stroke tissue (Addi-
tional file 1: Fig. S1). Analysis of neutrophil density by 

sex, age, and post-mortem delay revealed neutrophil 
accumulation was independent of these covariates, 
although we observed somewhat greater variability in 
males (Additional file  1: Fig. S2). We immunolabelled 
MPO and S100A8 in the APP/PS1 mouse model, which 
has previously been shown to have cerebral neutrophil 

Fig. 1  Cerebral accumulation of neutrophils in APP/PS1 mice and human Alzheimer’s disease. Human brain tissue microarrays (N = 21–46 per 
condition) of middle temporal gyrus were stained for neutrophil markers a MPO (A0398), b MPO (ab1191060), c MPO (AF3667), d CD66B, and e 
S100A8. Scale = 250 μm, inset = 25 μm. P-values represent results of an two-tailed Student’s T-test.Brain sections from APP/PS1 or wild type mice 
were taken at 4 and 12 months, and stained for the neutrophil markers S100A8 and MPO. f Representative images and g analysis of neutrophil 
abundance in mouse brains. Scale = 100 μm. P-values represent results of a two-way ANOVA. The abundance and activity of neutrophil markers h, i 
MPO and j calprotectin in human brain tissue lysates was measured by ELISA (N = 7 – 13 per condition). P-values represent results of an two-tailed 
Student’s T-test
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accumulation, and we observed an increase in neutro-
phil abundance in the cortex of both 4 and 12-month-
old mice, although this was less striking than in human 
specimens (Fig. 1f, g). Regional analysis of mouse brains 
indicated that this effect was strongest in the cortex and 
hippocampus, although similar trends were observed in 
brainstem and cerebellum (Additional file  1: Fig. S3). 
Cortical and hippocampal densities were similar, and 
neutrophil accumulation in these regions was therefore 
quantified together. Finally, we observed an increase in 
the abundance of neutrophil markers calprotectin, of 
which S100A8 is a subunit, and MPO in AD brains by 
ELISA (Fig. 1h-j).

MPO accumulation in the AD brain is driven by an increase 
in vascular neutrophils
Because we mainly observed neutrophil-like MPO stain-
ing in brain tissue, we wanted to determine if neutrophil 
abundance was the major factor driving the increase in 
MPO found in AD [18–20]. We therefore used alterna-
tive neutrophil markers calprotectin and S100A8 in 
immunostaining and ELISA, and found that these were 
positively correlated with MPO abundance (Fig.  2a, b). 
Indeed, in immunolabelling experiments at least 97% 
of MPO-positive cells were co-labelled with S100A8 
(Fig.  2c). Previous reports have suggested that neutro-
phil accumulation in mouse AD models occurs primar-
ily in the vasculature [12], and we therefore wished to 
determine the localisation of neutrophils relative to 
blood vessels. We used tissue microarrays to measure 
MPO localisation within the human AD brain and found 
that neutrophils were present in higher numbers in the 
human AD vasculature (Fig. 2d, e). Interestingly, when we 
compared the localisation of neutrophils by vessel seg-
ment, we observed that there were increases in both large 
and small vessels, however the magnitude of increase was 
greater in small vessels (< 12 μm diameter; Fig. 2d, e). In 
both control and AD brains we found that the majority 
of MPO labelling was contained in blood vessels (Fig. 2f ). 

Interestingly, we also observed the presence of the BBB 
leakage product hemoglobin in close proximity to neu-
trophils found within blood vessels (Fig.  2g). In mouse 
AD model brains, we found a similarly striking vascu-
lar localisation of neutrophils in APP/PS1 mouse brains 
(Fig. 2h), as has been described previously [12].

Although the majority of neutrophils were found 
in the vasculature, we did observe rare extravascular 
CD66B-positive neutrophils indicating that infiltration 
does occur, albeit at a low rate (Fig. 3a, b). Furthermore, 
we observed sporadic deposition of MPO localised to 
amyloid plaques and tau tangles (Fig.  3a-d). Indeed, 
approximately half of the extravascular MPO-positive 
structures were localised to plaques, and a quarter to 
tangles (Fig. 3a, e). We observed significant correlations 
between both amyloid and tau deposition and MPO 
accumulation, although this was stronger for amyloid 
than tau (Fig. 3f, g).

NETosis occurs in the AD vasculature
The formation of NETs is an important neutrophil effec-
tor function, and has been linked to vascular remodelling 
in the retina as well as stroke and traumatic brain injury 
[42–44]. We initially hypothesised that NETs would be 
present in the AD vasculature and MPO deposits around 
plaques in the brain. We used massively multiplexed 
immunolabelling of brains to stain a panel of pathologi-
cal (Aβ, tau, NeuN), inflammatory (Iba1, L-ferritin, HLA-
DR, GFAP), vascular (Lectin, Collagen IV, hemoglobin), 
and neutrophil markers (MPO, S100A8), alongside the 
specific NET marker CitH3 to categorically define NETs 
(Fig. 4a). We confirmed the specificity of the CitH3 anti-
body in brain tissue, detecting NETs in a murine model 
of stroke (Additional file  1: Fig. S1). We observed the 
presence of CitH3 exclusively localised to neutrophil 
markers, however only a sub-population of neutro-
phils was detected, indicating that it was indeed label-
ling NETs (Fig. 4b). We hypothesised that, analogous to 
their response to other large aggregated structures such 

(See figure on next page.)
Fig. 2  MPO accumulation in Alzheimer’s disease and APP/PS1 mice is driven by neutrophil accumulation. a ELISA was performed in neurologically 
normal and Alzheimer’s disease brains for the myeloperoxidase and calprotectin (S100A8/9 heterodimer). N = 7–13. P-values represent results of a 
Pearson’s correlation test. b FFPE-embedded human brain sections from the middle temporal gyrus (N = 3–6 per condition) were immunostained 
for MPO and S100A8. Correlation between MPO and S100A8 positive cells in independent sections. Values represent results of a Pearson’s 
correlation test. c Image analysis was used to identify cells as S100A8-positive, MPO-positive, or co-labelled. Venn diagram of overlap between 
S100A8 and MPO. Human brain tissue microarrays from the middle temporal gyrus (N = 21–28 per condition) were labelled with the vascular 
marker lectin and MPO. d Representative images and e quantification of the localisation of MPO within large (> 12 μm diameter) and small (< 12 μm 
diameter) lectin-positive vessels. Scale bar = 100 μm. Values represent results of a two-way ANOVA. f Quantification of the percentage of total MPO 
load present in blood vessels in AD and control brains. Wild-type or APP/PS1 mouse brains at 4 and 12 months of age were labelled for vascular 
marker tomato lectin (LEL) and neutrophil markers (MPO/S100A8). g Representative images of neutrophils associated with BBB leakage product 
hemoglobin in AD brains. Scale = 100 μm. h Representative images of MPO and S100A8-positive neutrophils in 12 month-old APP/PS1 vasculature. 
Scale bar = 5 mm, inset = 100 μm
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as gallstones and cholesterol crystals, neutrophils may 
respond to aggregated forms of Aβ1-42 through NET for-
mation [29, 30]. However, we did not detect NETosis in 
response to Aβ1-42 in any aggregation state in vitro (Addi-
tional file  1: Fig. S4). Furthermore, we only observed 
CitH3 localised to vascular neutrophils (Fig.  4b, f ), but 
not plaque associated MPO-deposits as we originally 
hypothesised. MPO in these regions was colocalised with 
activated microglial markers Iba1, L-ferritin, and HLA-
DR (Fig. 4c). Although NETs were present at higher levels 
in AD, they were only present in low abundance and in 
less than half of the cohort (Fig. 4d-g).

Reduced endothelial glycocalyx in AD vessels
During previous experiments (Figs. 2, 3, 4), we observed 
a reduction in the intensity of staining for UEA1 lectin, a 
marker for fucosylation in the glycocalyx, in human AD 
vessels. Indeed, image analysis indicated that there was 
significantly reduced UEA1 staining intensity in AD, irre-
spective of vessel size (Fig. 5a, b). To ensure results were 
not confounded by changes to vascular density, we used 
collagen IV as a total vascular marker, and measured lec-
tin intensity within collagen-positive structures, again 
segregating large and small vessels. There was a simi-
lar reduction in the lectin staining, particularly in small 
vessels, however a similar trend was observed in large 
vessels too (Fig.  5a, b). We also interrogated potential 
mechanisms through which attachment may be medi-
ated using a single-cell RNAseq atlas of the AD vascula-
ture [40]. Interestingly, although there were no increases 
in the expression of cell adhesion molecules (ICAM1, 
ICAM2, VCAM1, SELE) in endothelial cells, there was a 
decrease in FUT11, an enzyme associated with the pro-
duction of the glycocalyx (Fig. 5c, d) [40].

Discussion
While increased MPO [11, 18–20] and cerebral neutro-
phil accumulation [10–13] are well-established features 
of AD, there have been several reports of unusual cellular 
sources and localisations of MPO. Previous reports have 
primarily focussed on the accumulation of neutrophils 
in mouse models [10–13], or have used a limited panel 
of antibodies [11, 18, 19]. We used tissue from a large 
human cohort and mouse tissue to show that MPO depo-
sition in the AD brain is primarily driven by neutrophil 
accumulation. The majority of this MPO is contained in 

vascular-associated neutrophils, confirming reports from 
animal models of AD [12]. Furthermore, we find evidence 
for vascular NETosis in human AD. Finally, we observe 
a decrease in staining for the glycocalyx using UEA-1 
lectin to indicate that reductions in the endothelial gly-
cocalyx may drive neutrophil accumulation in the AD 
vasculature.

Several reports have indicated that MPO may be pro-
duced by non-neutrophil cells, including microglia [19], 
astrocytes [20], and neurons [19]. Using multiple differ-
ent antibodies we confirmed that the majority of MPO 
staining was confined to neutrophils. It should be noted 
that, although S100A8 can be expressed in other cell 
types, MPO was also found almost exclusively colocal-
ized with other neutrophil markers including CD66B. 
Furthermore the nuclei associated with MPO were poly-
morphonuclear. We did, however, observe low levels of 
MPO in plaque-associated microglia, reinforcing reports 
that it may be a microglial activation marker [46]. Since 
the bulk of MPO labelling was confined to neutrophils, 
we concluded that the increase of MPO in AD is mainly 
driven by the accumulation of neutrophils in the brain. 
Strikingly, we predominantly observed neutrophils pre-
sent within lectin-positive blood vessels, and only very 
rarely in the parenchyma in both a mouse model of amy-
loidosis and in human AD.

Our work corroborates findings from mouse AD mod-
els in human AD, suggesting that neutrophil plugging 
of capillaries leads to blood flow reductions in AD [12, 
13]. Importantly, neutrophil plugging of the vasculature 
occurred early in this mouse model, and the removal of 
neutrophil plugs led to improved cerebral blood flow 
and cognition [12, 13]. While our work was performed 
on tissue from end-stage disease, this suggests that neu-
trophil plugging may also be present early in human AD. 
The enhanced neutrophil-vascular interactions observed 
in AD suggest that either neutrophils or the vasculature 
become ‘stickier’. It is also important to note that human 
samples are processed differently to those in mouse 
studies, with a significant delay between death and per-
fusion-fixation, and this may influence the numbers of 
neutrophils present in the vasculature. Despite this, tis-
sue processing is consistent between human samples, 
and so results remain internally consistent.

There have been conflicting reports, some suggesting 
that the cell adhesion molecules ICAM1 and VCAM1 

Fig. 3  Non-vascular localisation of MPO in human Alzheimer’s disease. Tissue microarrays of human middle temporal gyrus were stained for 
MPO with pTau, amyloid-β, or CD66B. a Representative images of non-vascular MPO localisation associated with pTau tangles, amyloid-β plaques, 
and infiltrating CD66B-positive neutrophils. Scale = 25 μm. Quantification of the amount of b extravascular MPO, c MPO-positive plaques, and d 
MPO-positive tangles. Values represent results of an two-tailed Student’s T-test. e Percentage of extravascular MPO associated with plaques and 
tangles. Correlation of total MPO load in tissue with the load of f plaques and g tangles. Values represent results of a Pearson’s correlation test

(See figure on next page.)
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are enhanced in the AD vasculature [11, 47], but more 
recent findings indicate that expression of genes involved 
in neutrophil attachment are unchanged in human AD 
endothelia [40]. Interestingly, although vascular neu-
trophils were increased in APP/PS1 mice, the degree 
of attachment was lower than in AD, suggesting that 
although vascular changes are present, they are not 
equivalent [40]. Furthermore, we find that UEA-1 lectin 
staining of the endothelial glycocalyx is decreased in AD. 
Indeed, loss of endothelial glycocalyx in a mouse model 
of subcortical vascular dementia was responsible for cap-
illary stalling [48]. Furthermore, hyaluronan, a marker 
of glycocalyx damage, was elevated in the cerebrospinal 
fluid of AD and vascular dementia patients [49, 50]. Cir-
culating neutrophils have been reported to be more acti-
vated in AD [51], and they can also alter the endothelial 
glycocalyx [52, 53], so it is possible that these changes to 
neutrophil activation state are responsible for glycocalyx 
changes and vascular attachment. However, we specu-
late that glycocalyx thinning may result from reduced 
production with reduced expression of FUT11, a gene 
involved in glycocalyx production in AD endothelial cells 
[40]. This may allow for enhanced neutrophil attach-
ment, even in the absence of strong cell adhesion mol-
ecule expression. Furthermore, in the absence of strong 
cell adhesion molecule expression, attachment would not 
facilitate neutrophil infiltration, and may explain why 
neutrophils remain in the vasculature. In human samples 
though, it is worth noting that we could not distinguish 
the means through which neutrophils had become pre-
sent in vessels. Indeed, it is possible that the observed 
accumulation of neutrophils here may have been the 
result of them becoming trapped, rather than adher-
ing the vessel wall. Importantly, although human and 
mouse brains were processed differently, we did observe 
similar enhancement of vascular associated neutrophils 
in AD and the APP/PS1 mouse model of AD indicating 
that our observations are unlikely to be the result of a 
post-mortem artefact. It will be important to further vali-
date changes to the AD glycocalyx composition, and the 
expression of the enzymes that synthesise it. Indeed, it 
may be possible to modify endothelial glycocalyx synthe-
sis to prevent neutrophil adhesion to capillaries in AD.

The accumulation of neutrophils and MPO in the 
brain vasculature has important consequences for the 

surrounding cells [22]. Indeed, cells at the borders of the 
brain can have profound effects on cognition and pathol-
ogy. MPO binds strongly to the vascular endothelium 
through its interactions with the negatively charged gly-
cocalyx in other chronic inflammatory diseases, includ-
ing heart disease, to cause endothelial dysfunction [52, 
54, 55]. Here, too, we observe BBB dysfunction at sites 
where neutrophils are attached to blood vessels. Fur-
thermore, MPO impairs the barrier function of brain 
endothelial cells through the production of HOCl [56]. 
HOCl is highly reactive and consumed close to its site of 
production [23]. It is possible that longer-lived second-
ary oxidants such as chloramines mediate the effects of 
HOCl on the vasculature [23]. In the presence of thiocy-
anate concentrations present in plasma, MPO also gener-
ates HOSCN [57]. We have found that this longer lived, 
thiol-selective oxidant can impact endothelial cells at 
sub-lethal doses [58], including disruption of BBB func-
tion [59]. In the context of AD, it is possible that neutro-
phil-vascular interactions are an important mechanism 
through which BBB dysfunction is established [22].

We observed very little parenchymal MPO indicat-
ing that the majority of neutrophil attachment in AD 
does not lead to neutrophil infiltration. However, it is 
clear that there is a limited degree of neutrophil infiltra-
tion into the AD brain, supporting previous reports [10, 
11]. It is interesting to note that we did not observe pro-
found infiltration of neutrophils into the brains of APP/
PS1 mice. While this contradicts results in tauopathy 
and 5XFAD mice, it does align with other reports from 
the APP/PS1 model, indicating that strain may influ-
ence the infiltration of neutrophils in AD models [12]. 
Furthermore, we detected parenchymal MPO deposits 
associated with AD pathology. These MPO deposits were 
larger and morphologically different to staining patterns 
observed in neutrophils. When activated, neutrophils 
are capable of forming NETs, creating a DNA–protein 
matrix that has powerful immunostimulatory properties 
[28]. We initially hypothesised that these MPO deposits 
were NETs however we could not observe colocalisation 
of other neutrophil or NET markers. Plaque-associated 
MPO deposits were colocalised with markers of acti-
vated microglia (HLA-DR, L-ferritin), albeit at much 
lower levels than neutrophils. Indeed, MPO may be an 
activation marker in microglia in its own right [46]. It is 

(See figure on next page.)
Fig. 4  Identification of NETs within blood vessels in human Alzheimer’s disease. AD issue microarrays from the middle temporal gyrus (N = 45–46 
per condition) were repeatedly immunostained, imaged, and stripped to build up a multiplexed panel of antibody labelling on the same section. 
This panel included the specific marker for NETs CitH3, as well as neutrophil/NET markers MPO and S100A8. a Representative images of all 
stains and insets of b NETs and c MPO-positive microglia. Scale bar = 250 μm, inset = 100 μm. d Quantification of the number of CitH3/MPO/
S100A8-positive NETs in AD and control cores. P-values represent results of an two-tailed Student’s T-test. The proportion of e MPO/S100A8-positive 
neutrophils positive for CitH3, f localised in blood vessels, and g cases positive for NETs in AD and control
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Fig. 5  Reduction in endothelial glycocalyx in AD brain. AD tissue microarrays from the middle temporal gyrus (N = 21–37 per condition) were 
labelled for the total vessel marker collagen IV, and endothelial glycocalyx marker UEA1 lectin. a Representative images of lectin immunolabelling, 
and b quantification of lectin intensity in blood vessels in control and AD brains, segregated by vessel size. Scale = 250 μm. P-values represent 
results of an two-way ANOVA. Single nuclear RNA-seq from the human AD vasculature were obtained from https://​twc-​stanf​ord.​shiny​apps.​io/​
human_​bbb/, and genes involved in c cell adhesion processes, and d fucosylation of the endothelial glycocalyx evaluated

https://twc-stanford.shinyapps.io/human_bbb/
https://twc-stanford.shinyapps.io/human_bbb/
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also possible that parenchymal NETs cannot be detected 
through CitH3 labelling, as the citrullination occurs in a 
region of the histone tail that is cleaved during NETosis 
and is a more robust marker of early, rather than mature, 
NETs [60]. Antibodies to NET-specific modifications in 
mature NETs could be used to detect this phenomenon 
[60].

We observed NETosis in the AD vasculature, 
although this was not ubiquitous and the presence of 
NETs was rarer than in stroke, our positive control. 
There have been other reports of NETosis in sterile neu-
rological diseases, including stroke and traumatic brain 
injury, where they are involved in vascular remodelling 
[42, 43]. While there are preliminary reports of NETo-
sis in the AD brain [11], their localisation has not been 
interrogated. Recent reports indicate that senescent 
endothelial cells attract and promote NETosis to trigger 

vascular remodelling in the retina following oxygen-
induced retinopathy [44], and that NETs also play a role 
in vascular remodelling following stroke [43]. It is pos-
sible that a similar phenomenon occurs in AD, leading 
to vascular regression [40, 61]. Recent reports suggest 
that CNS-associated neutrophils are derived from mul-
tiple sources, including the blood and adjacent skull 
bone marrow [62, 63]. The vascular association of neu-
trophils observed here suggests their origin from the 
circulation, which may be associated with activated 
neutrophil phenotypes in AD that are more prone to 
NETosis [62].

The localisation of neutrophils and MPO within cer-
ebral vessels suggests that they may be a peripheral tar-
get with the potential to enhance cognitive function in 
AD. Indeed, preventing leukocyte tethering to the brain 
vasculature improves cognition in aging [64], as well as 
in models of AD [11–13]. Furthermore, the presence 
of NETs, and therefore extracellular MPO at the brain 
vasculature represents a novel AD-associated process. 
It may be possible to prevent MPO release by target-
ing NETosis, degrading NETs, or by addition of mole-
cules that sequester MPO from the glycocalyx to ‘wash’ 
it off the endothelium without modulating potentially 
beneficial functions within the neutrophil cytoplasm 
[57,66]. Although the majority of neutrophils in AD 
are present at a brain barrier and not within the brain 
itself, they may still have important effects on cognition 
[9, 11, 12], so targeting inflammation in BBB endothe-
lial cells or through modulation of neutrophils may be a 
useful therapeutic target in AD [15].

Conclusions
Here, we confirm data from animal models in the 
human AD brain suggesting that neutrophils accumu-
late, and are associated with blood vessels in AD where 
they may contribute to vascular stalling and BBB leak-
age (Fig.  6). We also show that neutrophils and NETs 
are the key source of MPO in the brain during AD 
which may represent an important mechanism through 
which BBB inflammation influences oxidative stress in 
AD.
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Fig. 6  Effects of neutrophil-vascular interations in AD. In healthy 
brains, neutrophils flow freely through vessels with limited 
interactions with endothelial cells enabling adequate perfusion. 
During Alzheimer’s disease, reductions in the glycocalyx may 
enhance the non-productive attachment of neutrophils to 
endothelial cells. These attached neutrophils can cause the stalling 
of vessels, undergo NETosis, and may lead to oxidative stress 
and blood-brain barrier breakdown. Reducing neutrophil-vascular 
interactions may be beneficial to improve vascular function in AD
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