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Abstract 

Primary spinal cord tumors contribute to ≤ 10% of central nervous system tumors in individuals of pediatric or 
adolescent age. Among intramedullary tumors, spinal ependymomas make up ~ 30% of this rare tumor population. 
A twelve-year-old male presented with an intradural, extramedullary mass occupying the dorsal spinal canal from C6 
through T2. Gross total resection and histopathology revealed a World Health Organization (WHO) grade 2 epend-
ymoma. He recurred eleven months later with extension from C2 through T1-T2. Subtotal resection was achieved 
followed by focal proton beam irradiation and chemotherapy. Histopathology was consistent with WHO grade 3 
ependymoma. Molecular profiling of the primary and recurrent tumors revealed a novel amplification of the MYC 
(8q24) gene, which was confirmed by fluorescence in situ hybridization studies. Although MYC amplification in spinal 
ependymoma is exceedingly rare, a newly described classification of spinal ependymoma harboring MYCN (2p24) 
amplification (SP-MYCN) has been defined by DNA methylation-array based profiling. These individuals typically 
present with a malignant progression and dismal outcomes, contrary to the universally excellent survival outcomes 
seen in other spinal ependymomas. DNA methylation array-based classification confidently classified this tumor as 
SP-MYCN ependymoma. Notably, among the cohort of 52 tumors comprising the SP-MYCN methylation class, none 
harbor MYC amplification, highlighting the rarity of this genomic amplification in spinal ependymoma. A literature 
review comparing our individual to reported SP-MYCN tumors (n = 26) revealed similarities in clinical, histopathologic, 
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Introduction
Primary spinal cord tumors are rare in children and ado-
lescents, contributing to ≤ 10% of all pediatric central 
nervous system (CNS) neoplasms [52]. Intramedullary 
spinal ependymomas (EP) make up ~ 30% of pediatric 
spinal cord tumors, second to astrocytomas [52]. Histo-
logically, spinal cord ependymomas are categorized into 
subependymoma (World Health Organization (WHO) 
grade 1), myxopapillary EP (WHO grade 2), and classic 
or anaplastic EP (WHO grade 2/3) [34]. Furthermore, 
molecular classification using DNA methylation array-
based profiling distinguishes three distinct molecular 
subgroups of spinal EP: subependymoma (SP-SE), myx-
opapillary EP (SP-MP), and anaplastic EP (SP-EP) [38]. 
Despite these divergent molecular subgroups, spinal cord 
EP are typically slow growing with universally excellent 
overall survival rates, especially when gross total resec-
tion of the tumor can be achieved [4, 7, 33, 36, 46]. Radia-
tion therapy is usually advocated for subtotally resected 
grade 2 tumors [3, 18, 32, 46] and all patients with grade 
3 tumors [3, 12, 46].

Recently, a novel molecular subgroup of spinal EP with 
focal high-level MYCN (2p24) amplification was defined 
and found to be associated with dismal outcomes and 
malignant progression, despite aggressive management 
[20, 41, 43, 49]. This molecular pathology will be newly 
recognized as a distinct subgroup of spinal cord EP (SP-
MYCN) in the fifth edition of the WHO Classification of 
Tumors of the Central Nervous System [16, 35]. Similar 
to SP-MP, SP-MYCN were found to develop in extramed-
ullary spaces in sharp contrast to the intramedullary 
growth seen in SP-EP [20, 41, 49]. Herein, we report on 
an adolescent male with aggressive classic spinal EP har-
boring a novel focal amplification of the MYC oncogene 
located on chromosome 8q24.

Case presentation
A 12-year-old male with no significant past medical 
history presented to the emergency room with a three-
month history of back pain and acute onset of weakness 
in the left lower extremity. Neurological examination was 
significant for left lower extremity weakness and ataxia. 
Magnetic resonance imaging (MRI) of the brain and 
spine revealed a localized avidly enhancing intradural, 
extramedullary mass occupying the dorsal spinal canal 
from C6 through T2. The tumor resulted in severe cord 
compression and mild edema (Fig. 1a, b). He underwent 

a gross total resection of the tumor followed by observa-
tion with serial imaging. Eleven months later, he re-pre-
sented with acute onset of lower extremity paresthesia 
and left-handed weakness. Spine MRI revealed tumor 
recurrence with further extension anteriorly and pos-
terior to the cord from C2 through T1-T2 with result-
ant severe cord compression, again demonstrating avid 
enhancement (Fig. 1c, d). Management included subtotal 
resection of the recurrent mass, focal proton beam irra-
diation (50.4 Gy), followed by four cycles of chemother-
apy with vincristine, etoposide, cyclophosphamide, and 
cisplatin, as per ACNS0831 [45], then oral vorinostat for 
seven months. The patient experienced further progres-
sion with distal metastases in the thoraco-lumbar region 
distal to his primary tumor, 16 months after first relapse 
(Fig. 1e, f ), and completed intensity-modulated radiation 
therapy (IMRT) of 36 Gy to the entire thecal sac. On his 
post-radiation MRI, there was evidence of progression 
of the cervical region tumor and the patient is therefore 
now undergoing focal re-irradiation of the cervical region 
tumor. A clinical summary is presented in Table 1.

Histopathologic examination of the initial resection 
specimen revealed a compact lobulated glial neoplasm 
with variable morphology. The majority of the tumor 
showed classic ependymoma features, including mildly 
pleomorphic tumor cells with round to oval nuclei 
arranged in perivascular pseudo-rosette (nuclear-free 
zone) formations, often surrounding capillaries show-
ing microvascular proliferation (Fig.  2a). Other tumor 
areas showed clear cell change (Fig.  2b) or tanycytic 
morphology with elongate spindle cells. Densely cellu-
lar nests of mitotically active cells displaying conspicu-
ous nucleoli were also present (Fig.  2c). Mitoses were 
counted at 3–4 per 10 high power fields (HPF). Squash 
preparations showed a branching angiocentric pattern 
of tumor cells (Additional File 1: Fig. S1a). Immunohis-
tochemical stains demonstrated prominent perivascular 
glial fibrillary acidic protein (GFAP) staining (Fig.  2d) 
while Olig-2 nuclear staining was rare (Fig. 2e). Epithelial 
membrane antigen (EMA) showed perinuclear dot-like 
immunoreactivity (Fig.  2f ), while ring-like staining was 
much less frequent. The Ki-67 proliferation index was 
focally up to 20% (Additional File 1: Fig. S1b). A diagno-
sis of ependymoma, WHO grade 2, with histopathologic 
features bordering between WHO grade 2 and WHO 
grade 3. The subsequent recurrent/residual tumor speci-
men showed similar histologic features, with even more 

and molecular features. Thus, we provide evidence from a single case to support the inclusion of MYC amplified spinal 
ependymoma within the molecular subgroup of SP-MYCN.
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extensive regions of hypercellular tumor and higher 
mitotic index (up to 8 per 10/HPF) diagnostic of anaplas-
tic ependymoma, WHO grade 3 based on the 2016 WHO 
Classification.

To further characterize the tumor, the patient was con-
sented on an Institutional Review Board-approved trans-
lational research protocol and underwent comprehensive 
molecular profiling, including paired tumor/normal 
enhanced exome sequencing (eES) and RNA-sequencing 
(Additional File 1: Materials and Methods). This analysis 
included an evaluation of small single nucleotide variants 
(SNV), small insertion-deletions, copy number altera-
tions (CNA), gene fusions, and aberrant gene expression. 
We sequenced disease-involved tissue from both the pri-
mary spinal cord tumor and localized tumor recurrence 

occurring 11 months after the primary tumor. We did not 
identify any cancer- or disease-associated SNVs or CNAs 
from the germline comparator peripheral blood. In addi-
tion, we did not identify any clearly medically meaning-
ful somatic SNVs, small indels, or gene fusions. In both 
analyzed timepoints, the CNA profile was notable for 
a focal amplification of the MYC gene on 8q24 (Fig. 3a) 
and biallelic loss of 17p, including TP53 and likely con-
sistent with an isochromosome 17q (Fig.  3b, Addi-
tional File 1: Table S1). Other CNA described from eES 
included segmental biallelic losses of 8q, 10q (including 
PTEN), and 19q (Additional File 1: Fig. S2, Additional 
File 1: Table S1). The University of California Santa Cruz 
(UCSC) Treehouse Initiative (https://​treeh​ouseg​enomi​
cs.​ucsc.​edu/​explo​re-​our-​data/) is a collaborative data 

Fig. 1  MRI images at presentation: sagittal a T1-weighted and b T2-weighted showing avidly enhancing intradural mass, occupying the dorsal 
spinal canal from C6 through T1-T2. MRI images at first relapse: sagittal c T1-weighted and d T2-weighted showing avidly enhancing tumor, now 
extending from C2 through T1-T2. MRI images at second relapse: sagittal e T1-weighted and f T2-weighted showing new noncontiguous separate 
nodules scattered along the surface of the cord from C7 through L1

https://treehousegenomics.ucsc.edu/explore-our-data/
https://treehousegenomics.ucsc.edu/explore-our-data/
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sharing initiative whereby RNA-sequencing data from a 
breadth of tumor types are publicly available. We utilized 
a cohort of pediatric and adolescent/young adult central 
and peripheral nervous system tumors (n = 563) from 
the UCSC Treehouse Initiative to compare MYC gene 
expression. Consistent with the identified gene amplifi-
cation, MYC was found to be overexpressed in both pri-
mary (log2 fold change: 3.95, P = 0.0007) and recurrent 
(log2 fold change: 4.57, P = 9.57 × 10–5) tumors. Visu-
alization of MYC expression for our described patient 
case relative to ependymoma (n = 41), glioma (n = 300), 
medulloblastoma (n = 129), and neuroblastoma (n = 199) 
patients from the UCSC Treehouse Initiative and our 
internal cohort confirmed this overexpression (Fig. 3c).

Fluorescence in  situ hybridization (FISH) of the MYC 
(8q24) and MYCN (2p24) loci was performed from for-
malin-fixed paraffin-embedded tissue to confirm the 
presence of MYC amplification. Greater than 20 copies of 
MYC were detected relative to a 2-copy state for the cen-
tromere of chromosome 8 with the amplification signal 
pattern most consistent with double minute formation 
(primary tumor: nuc ish(MYC amp)[74/100]; recurrent 
tumor: nuc ish(MYC amp)[92/100]) (Fig. 3d). In compar-
ison, the MYCN locus was present at a 2-copy state with 
two signals detected for both MYCN and the centromere 
of chromosome 2 (primary tumor: nuc ish(MYCNx2)

[89/100]), recurrent tumor: nuc ish(MYC amp)[87/100]) 
(Additional File 1: Fig. S3). These results provide orthog-
onal confirmation of next generation sequencing data 
supporting the identification of a spinal ependymoma 
harboring a novel MYC amplification.

DNA methylation-based molecular classification was 
performed to assign the described patient case to one of 
the ten established EPN groups (SP-MP, SP-EP, SP-SE, 
SP-MYCN, ST-SE (supratentorial subependymoma), 
ST-YAP1 (supratentorial ependymoma YAP1-fused), 
ST-ZFTA (supratentorial ependymoma ZFTA-fused), 
PF-SE (posterior fossa subependymoma), PFA (posterior 
fossa group A), PFB (posterior fossa group B)). Unsuper-
vised clustering with a reference cohort of 501 methyla-
tion profiles spanning all 10 established molecular EPN 
groups clearly assigned the tumor from our described 
patient case  to the SP-MYCN group (Fig.  4a) [20, 38]. 
This result was confirmed in a repeated clustering 
restricted to reference cases of the four molecular spi-
nal EPN groups (n = 66, Fig. 4b). Analyses of CNA plots 
of 52 spinal tumors predicted as SP-MYCN revealed 
a focal amplification of MYCN in 50/52 tumors, but no 
additional case with MYC amplification (Fig.  4c). Fur-
thermore, when clustered with a cohort of ~ 80,000 
DNA methylation profiles covering the entire spectrum 
of existing molecular CNS tumor classes, the described 

Fig. 2  Histologic features of the primary tumor assessed by routine Hematoxylin and Eosin stain demonstrating perivascular pseudo-rosettes 
surrounding capillaries showing a microvascular proliferation (20× magnification), with b focal clear cell ependymoma (20× magnification). 
c Mitotically active cells are denoted by the asterisk (*) (40× magnification). The tumor cells demonstrated d strong perivascular GFAP 
(20× magnification), e sparse Olig-2 nuclear staining (20× magnification), and f dot-like EMA reactivity (40× magnification). The histopathologic 
findings were similar in the primary and recurrent tumors
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patient case classified with the SP-MYCN EPN subgroup. 
SP-MYCN will be included as a new reference group in 
the upcoming version (v12.3) of the Heidelberg Brain 
Tumor Methylation Classifier. This most recent version 
(v12.3) of the classifier assigned the described patient 
case to the SP-MYCN group with a calibrated score of 
0.99, which is above the cut-off for confident class predic-
tion (0.9) [10], and thus confirms the assignment of the 
case to the molecular group of SP-MYCN.

Discussion and conclusions
This report describes a novel case of an aggressive recur-
rent progressive spinal cord ependymoma with histologic 
features of an anaplastic ependymoma harboring focal 
MYC amplification. Interestingly, DNA methylation-
based classification assigned this case to the molecular 
group of SP-MYCN. MYC (8q24) encodes the c-MYC 
protein, a  transcription factor that interacts with other 
proteins to regulate gene expression, including those that 
promote cell growth and proliferation [25, 48]. Deregula-
tion of MYC has been shown to stimulate and maintain 
tumorigenesis in ex  vivo models [28, 48]. MYC altera-
tions are recurrently described amongst many different 

types of neoplasms, including pediatric brain tumors [6, 
25], with amplification being most frequently reported 
[25, 28]. Glial and non-glial brain tumors harboring MYC 
amplification demonstrated a significantly worse progno-
sis [8, 22, 27, 30, 37, 42, 54].

Despite the high frequency of MYC gene alteration in 
human cancers, it has been rarely reported in epend-
ymoma. A single individual was reported with a recur-
rent anaplastic ependymoma harboring an abnormal 
karyotype 46,XX,der(8)t(8;11)(q24;p11), − 11,add(?)
t(?;11)(?;q13)) and MYC overexpression [13]. Notably, 
this tumor was not located in the spine but rather in the 
supratentorial region of the brain. Despite MYC overex-
pression, no evidence of MYC gene rearrangements nor 
amplification were identified [13]. Given the paucity of 
literature describing MYC alterations in ependymoma, 
we performed a literature review describing the clinical, 
histologic, and molecular features of the 26 reported 
spinal ependymomas with MYCN (2p24) amplification 
(Table 1 and Additional File 1: Table S1) [20, 41, 43, 49]. 
Similar to our described patient case, the SP-MYCN 
tumors had distinct growth patterns, and typically 
arose intradurally and extramedullary with invasion of 

Fig. 3  Somatic copy number alterations (CNA) on chromosome 8 (a) and chromosome 17 (b) are shown as derived from enhanced exome 
sequencing data. The blue points represent log2 values based on sequence depth in 100 bp windows. The red line indicates segmented CNA calls. 
The MYC (8q24) amplification is highlighted by the arrow. c Distribution of MYC gene expression in ependymomas (n = 41), gliomas (n = 300), 
medulloblastomas (n = 129), and neuroblastoma (n = 199) amid the UCSC Treehouse cohort and patients enrolled on our translational cancer 
protocol with the red points indicating our described patient case. The shape indicates timepoint (circle = primary tumor, triangle = recurrent 
tumor). d Fluorescence in situ hybridization (FISH) of the MYC locus (red) demonstrates gene amplification (> 20 signals compared to chromosome 
8 centromere in green) with signal pattern most consistent with double minute formation
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the spinal cord. Most of the SP-MYCN tumors were 
located in the cervical or thoracic spine and were com-
monly associated with nodular metastatic spread and 
diffuse leptomeningeal involvement [20, 41, 43, 49]. 
Compared to other spinal ependymomas, SP-MYCN 
tumors were associated with aggressive behavior and 
unfavorable outcomes, despite intensive multi-modal 

therapies [20, 41]. In the described patient case, the 
histopathologic features including perivascular pseudo-
rosettes, microvascular proliferation, densely cellular 
nests of mitotically active cells, prominent perivascular 
GFAP staining, sparse Olig-2 nuclear staining, a dot-
like staining pattern with EMA, as well as increased 
Ki-67 proliferation indices were also described in prior 

Fig. 4  a t-SNE showing DNA methylation array-based clustering of the described patient case (enlarged black dot) with a reference cohort of 
n = 501 tumors spanning across ten established molecular EPN groups [20, 38] and b a subset restricted to the four established spinal EPN groups. 
In both analyses, the MYC-amplified case (enlarged black dot) clustered with the SP-MYCN group. SP-MP (spinal myxopapillary ependymoma), 
SP-EP (spinal anaplastic ependymoma), SP-SE (spinal subependymoma), SP-MYCN (spinal ependymoma, MYCN-amplified), ST-SE (supratentorial 
subependymoma), ST-YAP1 (supratentorial ependymoma YAP1-fused), ST-ZFTA (supratentorial ependymoma ZFTA-fused), PF-SE (posterior fossa 
subependymoma), PFA (posterior fossa group A), PFB (posterior fossa group B). c Copy number plot showing a prominent amplification at the MYC 
locus (chr8), but no alteration at the MYCN locus (chr2)
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reported examples of the molecular group SP-MYCN 
[20, 49]. Furthermore, loss of chromosome 10 may be 
a recurrent finding among this tumor subgroup, seen in 
8/19 (42%) individuals with available copy number data 
(Additional File 1: Table S1). Our described patient case 
with MYC amplification also demonstrated segmental 
losses across chromosome 10q, including the tumor 
suppressor PTEN. Amplification of MYC in combina-
tion with disruption of PTEN has been shown in pros-
tate cancer to contribute to aggressive disease and poor 
outcomes [23, 29]. Larger studies to assess the associa-
tion of MYC or MYCN amplification with chromosome 
10 loss and patient outcomes may be warranted.

In vitro and in vivo MYC inhibition has demonstrated 
tumor regression, across numerous tumor types [1, 11, 
47]; nevertheless, direct inhibition of MYC is challeng-
ing. Thus, efforts have shifted towards targeting MYC 
transcriptional targets and regulatory domains [11, 
25, 51, 53], including the study of BET inhibitors [2, 
21], CDK inhibitors [5], mTOR inhibitors [26], Aurora 
A-kinase inhibitors [9, 17] and CHK1 inhibitors [40]. 
Additionally, histone deacetylase (HDAC) inhibitors 
have been shown to impede MYC-amplified Group 3 
medulloblastoma tumor growth in vitro [14, 15, 39, 44]. 
Due to the focal MYC amplification, our patient received 
single-agent vorinostat, an oral HDAC inhibitor that is 
well tolerated in children with relapsed CNS tumors [19, 
24, 31, 50], following his first relapse. However, he pre-
sented with progressive disease after seven months.

In summary, we report a unique case of an adoles-
cent male with an aggressive spinal ependymal tumor 
harboring focal MYC amplification. DNA array-based 
methylation profiling confidently classified this tumor 
as SP-MYCN, a recently described subgroup  of spi-
nal ependymoma. Our described patient case demon-
strates clinical, histologic, and molecular overlap with 
the newly described SP-MYCN subgroup. Thereby, 
we provide evidence to support the inclusion of MYC 
amplified spinal ependymoma within the molecular 
subgroup of SP-MYCN. Testing for MYC or MYCN 
gene amplification may be warranted in newly diag-
nosed spinal tumors to aid in tumor characterization. 
Future strategies should focus on investigating the effi-
cacy of indirect MYC-targeting strategies, introduc-
ing new possibilities for improving the prognosis in 
patients with SP-MYCN.
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