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predicts IDH mutational status in adult diffuse 
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Abstract 

Knowledge of 1p/19q-codeletion and IDH1/2 mutational status is necessary to interpret any investigational study of 
diffuse gliomas in the modern era. While DNA sequencing is the gold standard for determining IDH mutational status, 
genome-wide methylation arrays and gene expression profiling have been used for surrogate mutational determina-
tion. Previous studies by our group suggest that 1p/19q-codeletion and IDH mutational status can be predicted by 
genome-wide somatic copy number alteration (SCNA) data alone, however a rigorous model to accomplish this task 
has yet to be established. In this study, we used SCNA data from 786 adult diffuse gliomas in The Cancer Genome 
Atlas (TCGA) to develop a two-stage classification system that identifies 1p/19q-codeleted oligodendrogliomas and 
predicts the IDH mutational status of astrocytic tumors using a machine-learning model. Cross-validated results on 
TCGA SCNA data showed near perfect classification results. Furthermore, our astrocytic IDH mutation model validated 
well on four additional datasets (AUC = 0.97, AUC = 0.99, AUC = 0.95, AUC = 0.96) as did our 1p/19q-codeleted oli-
godendroglioma screen on the two datasets that contained oligodendrogliomas (MCC = 0.97, MCC = 0.97). We then 
retrained our system using data from these validation sets and applied our system to a cohort of REMBRANDT study 
subjects for whom SCNA data, but not IDH mutational status, is available. Overall, using genome-wide SCNAs, we 
successfully developed a system to robustly predict 1p/19q-codeletion and IDH mutational status in diffuse gliomas. 
This system can assign molecular subtype labels to tumor samples of retrospective diffuse glioma cohorts that lack 
1p/19q-codeletion and IDH mutational status, such as the REMBRANDT study, recasting these datasets as validation 
cohorts for diffuse glioma research.
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Introduction
Diffuse gliomas comprise the most common adult 
malignant tumors of the central nervous system [49]. 
These adult diffuse gliomas consist of three major 

biologically and clinically distinct molecular subtypes, 
which are defined by the mutational status of isoci-
trate dehydrogenase 1 and 2 (IDH) and the presence or 
absence of co-deletion of whole chromosome arms 1p 
and 19q, which further stratifies IDH-mutant diffuse 
glioma [39, 40]. These genetic alterations are strong 
predictors of survival and contain more information 
than historical histologically-based classification and 
grading systems [9, 15, 38, 52, 58]. In routine surgical 

Open Access

*Correspondence:  pjjc@uw.edu
3 Department of Laboratory Medicine and Pathology, Division 
of Neuropathology, University of Washington, 325 9th Avenue, 
Box 359791, Seattle, WA 98104, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0441-4502
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-021-01295-3&domain=pdf


Page 2 of 18Nuechterlein et al. Acta Neuropathologica Communications           (2021) 9:191 

neuropathology, it is common practice to classify dif-
fuse gliomas in terms of IDH mutational and 1p/19q-
codeletion status. Likewise, in contemporary research 
studies of adult diffuse gliomas there is limited utility, if 
any, in gaining insights into the biology of gliomas if the 
samples are not well annotated for this molecular infor-
mation. Furthermore, determining the robustness and 
reliability of any findings in human gliomas requires 
testing and validation across multiple cohorts. Conse-
quently, older retrospective cohorts of diffuse gliomas 
lacking IDH mutational and 1p/19q-codeletion status 
have limited utility for validating contemporary adult 
diffuse glioma study results.

As a testing platform, DNA sequencing is the gold 
standard method to detect the spectrum of clinically 
relevant canonical and non-canonical IDH mutations 
[11, 21, 55, 57, 59]. More recently, methods have been 
developed to infer IDH mutation and 1p/19q-codeletion 
status from methylation array [10, 47], gene expres-
sion [12], and magnetic resonance imaging data [3, 35, 
37, 43], which can provide surrogate molecular subtype 
labels for validating adult diffuse glioma study results. We 
have previously observed that there is a strong associa-
tion between adult diffuse glioma molecular subtype and 
patient somatic copy number alteration (SCNA) pro-
files, indicating that SCNA data alone may reflect global 
genomic structures that are associated with, and predic-
tive of, IDH mutational status [7, 16, 17, 48]. Further-
more, SCNA data has the advantage of directly encoding 
the extent of 1p and 19q loss, although an empirical 
threshold necessary to definitively call 1p/19q-codele-
tions has yet to be established.

In this study, we sought to develop and evaluate a 
robust system that predicts adult diffuse glioma IDH 
mutational status and 1p/19q-codeletion status from 
SCNA data alone. Special care is given to establish appro-
priate thresholds for calling 1p/19q-codeletions as well 
as simultaneous gain of whole chromosome 7 and loss of 
whole chromosome 10 (+ 7/ − 10), the latter of which is 
necessary for molecular grading of IDH-wildtype diffuse 
astrocytic gliomas [8]. We validate our system on a TCGA 
holdout set of histological World Health Organization 
(WHO) grade 4 tumors and three additional independent 
diffuse glioma datasets, including a dataset published by 
Glioma Longitudinal AnalySiS Consortium (GLASS) [6, 
10, 18, 31]. Finally, we report the system’s predictions on 
the retrospective REMBRANDT study, where genome-
wide SCNA data is available, but IDH sequencing is not 
[28]. Overall, our study makes older adult diffuse glioma 
datasets with SCNA data but without molecularly diag-
noses better suited for validating contemporary findings. 
Additionally, this study proposes evidence-based thresh-
olds for 1p/19q-codeletions and + 7/ − 10.

Materials and methods
TCGA glioma dataset
Somatic mutation calls for The Cancer Genome Atlas 
(TCGA) glioblastomas and lower-grade astrocytic and 
oligodendroglial tumors (N = 812) computed by the 
Multi-Center Mutation Calling in Multiple Cancers 
(MC3) project [20] were downloaded from University 
of California Santa Cruz (UCSC) Xena (https://​xena.​
ucsc.​edu/) [26]. Three versions of TCGA gene-level gli-
oma somatic copy number alteration (SCNA) calls were 
either downloaded from UCSC Xena or computed from 
copy number segmentation files downloaded from the 
National Cancer Institute’s Genomic Data Commons 
(GDC) Data Portal (https://​gdc.​cancer.​gov/). TCGA 
SCNA data downloaded from UCSC Xena (UCSC 
hg19) was the thresholded output of the Genomic Iden-
tification of Significant Targets in Cancer 2.0 (GISTIC) 
algorithm aligned to human genome assembly GRCh37 
(hg19) [46]. The GISTIC algorithm assigns each gene 
a discrete value between − 2 and 2 corresponding to 
gene homozygous deletion (− 2), single copy deletion 
(− 1), diploid normal copy (0), low-level amplification 
(1), or high-level amplification (2). We apply GISTIC to 
the copy number segmentation files downloaded from 
the GDC Data Portal to generate two additional ver-
sions of TCGA glioma SCNA data. One version (GDC 
hg19) was aligned to hg19 and the other (GDC hg38) 
to human genome assembly GRCh38 (hg38). TCGA 
SCNA data is derived from Affymetrix SNP 6.0 arrays.

TCGA glioma ultra‑low‑pass whole genome sequencing 
dataset
TCGA data was processed as ultra-low-pass whole 
genome sequencing (ULP-WGS, 0.1x) to compare 
Affymetrix SNP 6.0 array derived SCNA data to lower 
coverage data. Bam files for every patient in the TCGA-
LGG and TCGA-GBM projects with available bam files 
were downloaded from the GDC. These bam files were 
realigned to hg19 using SAMtools [36], BEDTools [51], 
Bowtie 2 [34], the Picard Toolkit (version 2.7.1) [56], 
and the Genome Analysis Toolkit (GATK, version 3.7) 
[45]. The R package HMMcopy (version 1.36.0) [33] was 
used to create wig files, and the R package ichorCNA 
[1] was used to create a custom panel of normals from 
bam files of normal blood or tissue downloaded from 
GDC for patients in the TCGA-LGG and TCGA-GBM 
projects. ichorCNA was then used to create copy num-
ber segmentation files using wig files created by HMM-
copy. GISTIC was used to compute gene-level SCNA 
calls from these segmentation files.

https://xena.ucsc.edu/
https://xena.ucsc.edu/
https://gdc.cancer.gov/
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TCGA molecular subtype training labels
Our baseline IDH mutation and 1p/19q-codeletion train-
ing labels are derived from IDH mutation calls reported 
by the MC3 project [20] and 1p/19q-codeletion annota-
tions published by Ceccarelli et  al. [12]. We compared 
the MC3 IDH mutation labels to the IDH mutation labels 
published by Ceccarelli et al. and the 1p/19q-codeletion 
status published by Ceccarelli et  al. to the gene-level 
TCGA SCNA training data (Additional file  1: Table  1). 
Two patients (TCGA-06-0151, TCGA-HT-A618) called 
IDH-wildtype in the MC3 project are labeled as IDH-
mutant astrocytomas by Ceccarelli et  al. One patient 
(TCGA-06-0151) is histological WHO grade 4, har-
bors + 7/ − 10, and lacks mutations in TP53 and ATRX. 
Because these are all characteristics of IDH-wildtype 
glioblastoma, we maintain the MC3 IDH-wildtype des-
ignation. The other patient (TCGA-HT-A618), however, 
is histological WHO grade 3, has intact chromosomes 
7 and 10, and harbors TP53 and ATRX mutations; thus, 
we replace the MC3 project IDH-wildtype label with 
the Ceccarelli et  al. IDH-mutant astrocytoma designa-
tion. Conversely, one patient (TCGA-P5-A72U) that car-
ries an IDH mutation in the MC3 project data is labeled 
IDH-wildtype by Ceccarelli et  al. This patient har-
bors + 7/ − 10, and lacks mutations in TP53 and ATRX, 
and we therefore consider this an IDH-wildtype glioblas-
toma. While SCNA data from three TCGA SCNA pipe-
lines indicate all 171 Ceccarelli et  al. oligodendroglial 
designated tumors carry 1p/19q-codeletions, five Cec-
carelli et al. designated IDH-mutant astrocytomas carry 
significant loss of 1p and 19q without loss of either 1q or 
19p on at least one, but not all, of the three TCGA SCNA 
versions we used (UCSC hg19, GDC hg19, GDC hg38) 
(Additional file 2: Fig. 1). Furthermore, all five tumors are 
TP53-wildtype, ATRX-wildtype, and are classified histo-
pathologically as oligodendroglioma or mixed oligoastro-
cytoma, indicating that they may be oligodendrogliomas 
(Additional file 1: Table 2). However, to avoid uncertainty, 
we excluded these five tumors from this study.

TCGA training set
Our final TCGA training set consists of 786 adult diffuse 
gliomas, 171 of which are IDH-mutant and 1p/19q-code-
leted oligodendrogliomas, 257 of which are IDH-mutant 
astrocytomas, and 358 of which are IDH-wildtype glio-
blastomas (Additional file  1: Table  3). Apart from the 
five Ceccarelli et  al. designated IDH-mutant tumors we 
justified excluding above, we also excluded 21 histologi-
cal lower-grade IDH-wildtype tumors, because we could 
not confirm that they harbored simultaneous gain of 
whole chromosome 7 and loss of whole chromosome 
10 (+ 7/ − 10), EGFR amplification, or TERT promoter 

(TERTp) mutation required by the fifth edition of the 
WHO criteria for classification as adult diffuse gliomas 
[8, 40]. The exclusion of these tumors is further justified 
in the main text. The remaining 70 histological lower-
grade IDH-wildtype tumors showed molecular markers 
consistent with the updated definition of IDH-wildtype 
glioblastoma as described in the fifth edition of the WHO 
criteria for classification as adult diffuse gliomas.

TCGA validation set
In addition to the 786 adult diffuse gliomas in our TCGA 
training set and the 26 tumors we excluded from our 
study, 167 other TCGA tumors have IDH mutational and 
1p/19q-codeletion status annotations published by Cec-
carelli et al., although they do not have MC3 mutational 
data to confirm these annotations. This cohort of patients 
consists of 2 oligodendrogliomas, 17 histological grade 4 
IDH-mutant astrocytomas, 146 histological grade 4 IDH-
wildtype glioblastomas, and 2 histological lower-grade 
IDH-wildtype tumors that do not qualify as adult dif-
fuse IDH-wildtype glioma under the criteria in the fifth 
edition of the WHO classification of CNS tumors [40, 
41]. We restrict this cohort to the 163 grade 4 astrocytic 
tumors and use these patients as a validation dataset.

Independent validation glioma datasets
The Glioma Longitudinal AnalySiS (GLASS) data
We used the Synapse API to download copy number 
segmentation files (variants_gatk_seg) for 201 primary 
diffuse astrocytic glioma in the Glioma Longitudinal 
AnalySiS (GLASS) dataset (Data Release version 2019-
03-28) [6, 18]. We processed these data with GISTIC with 
the parameters described below. This patient cohort con-
sisted of 143 IDH-wildtype glioblastomas and 58 IDH-
mutant astrocytomas determined from available IDH 
mutation annotations. We did not use data from GLASS 
oligodendroglioma patients because there were too few. 
Patients’ clinical variables including overall survival 
(N = 184) and age (N = 186) were also downloaded.

Jonsson et al. data
We downloaded copy number segmentation files from 
cBioPortal [13, 24] for 432 primary diffuse glioma 
patients originally described in Jonsson et  al. [31] and 
processed them with GISTIC as described below. Labels 
for IDH mutational status and 1p/19q-codeletion status 
were determined from criteria in the fourth edition of the 
WHO classification of CNS tumors. This patient cohort 
consisted of 319 IDH-wildtype gliomas, 63 IDH-mutant 
astrocytomas, and 50 oligodendrogliomas. Copy number 
alteration data were derived from targeted sequencing 
(MSK-IMPACT or FoundationOne) as described in [31]. 
Published clinical variables, including overall survival 
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(N = 432) and age (N = 432) for all patients, were also 
downloaded.

Capper et al.
Illumina 450  k methylation IDAT files for 489 non-
recurrent diffuse gliomas made available by the authors 
of Capper et  al. [10] were downloaded from the NCBI 
Gene Expression Omnibus (GEO) under accession num-
ber GSE109381. These methylation data were processed 
into copy number segmentation files using the R pack-
ages minfi [5] and conumee [29], and copy number calls 
were computed from these segmentation files using GIS-
TIC as described below. This patient cohort consisted of 
298 IDH-wildtype glioblastomas, 110 IDH-mutant astro-
cytomas, and 81 IDH-mutant and 1p/19q-codeleted oli-
godendrogliomas as determined by criteria in the fourth 
edition of the WHO classification of CNS tumors. Meth-
ylation-based molecular subtype labels from version 11 
of the random forest classifier released by Capper et  al. 
were also downloaded. Patient age (N = 420) was deter-
mined from published clinical variables, but outcome 
data was not available.

REMBRANDT prediction glioma dataset
Binary CN4.cnchp files from Affymetrix Human Map-
ping 50  K Hind240 (N = 240) and 50  K Xba240 SNP 
arrays (N = 192) for 275 samples were downloaded from 
the REMBRANDT Database (GEO Data Set GSE108475) 
[28]. Affymetrix Power Tools (http://​www.​affym​etrix.​
com/​partn​ers_​progr​ams/​progr​ams/​devel​oper/​tools/​
power​tools.​affx  February 2021, date last accessed) 
was used to convert the CN4.cnchp files into text files. 
Precomputed copy number and loss of heterozygosity 
analysis results from the CN4 algorithm were extracted 
from these files, and HmmMedianLog2Ratio values were 
used to estimate the underlying DNA copy number varia-
tion using the Bioconductor package DNAcopy [54]. GIS-
TIC was then applied to calculate gene-level gains and 
losses. In general, we found that data produced by Hind 
SNP arrays were cleaner than those generated by Xba 
SNP arrays and thus we used Hind-derived SCNA data 
for patients who had both Hind and Xba data (N = 157). 
Clinical variables including overall survival (N = 220) and 
age (N = 208) were also downloaded. Patient age ranges 
(i.e., 70–74) were replaced by their median age (i.e., 72).

GISTIC 2.0 parameters
GISTIC 2.0 (GISTIC) analysis was computed in the 
same manner across all datasets we generated from 
segmentation files [46]. GISTIC was run with the fol-
lowing parameters: Amplification Threshold = 0.1; Dele-
tion Threshold = 0.1; Cap Values = 1.5; Broad Length 

Cutoff = 0.7; Remove X Chromosome = 0; Confidence 
Level = 0.99; Join Segment Size = 4; Arm Level Peel 
Off = 1; Maximum Sample Segments = 2,000; Gene GIS-
TIC = 1; Q-value Threshold = 0.25; Savegene = 1; Run 
Broad Analysis = 1; Collapse Method = extreme. The 
GISTIC default hg19 reference was used for hg19 align-
ment; the hg38.UCSC.add_miR.160920.refgene.mat file 
was used for alignment to hg38. All SCNA datasets other 
than a version of TCGA SCNA data downloaded from 
the GDC Data Commons (GDC hg38) were aligned to 
hg19.

Machine learning methods
We first formatted our SCNA data so that our model 
was robust to data acquired from older cytogenetic array 
technologies as well as variation in data processing pipe-
lines. Downsampling SCNA data to chromosome arm-
level resolution provided an effective solution, because 
such processing created a data representation that did 
not depend on precise gene location or GISTIC out-
put dimension. To downsample SCNA data processed 
by GISTIC, we first considered amplifications (GISTIC 
score 2) as gains (GISTIC score 1) and homozygous dele-
tions (GISTIC score − 2) as single copy deletions (GIS-
TIC score − 1) so that all scores were between − 1 and 1. 
Because all data is in the same range, we did not perform 
additional normalization. Next, we assigned each chro-
mosome arm the mean value of the set of GISTIC scores 
that corresponded to that chromosome arm’s genes. We 
ignored chromosomes X and Y as well as chromosome 
arms 13p, 14p, 15p, 21p, and 22p, because they had a low 
gene count and therefore were sensitive to noise. The 
final model input format was a 39-dimensional chromo-
some arm-level SCNA data representation. To justify this 
data representation, we also compared it to a 50-dimen-
sional PCA-reduced representation of gene-level SCNA 
data and a 50-dimensional PCA-reduced representation 
of averaged cytoband-level input.

Our system consists of two stages: the first phase filters 
out oligodendrogliomas by screening for 1p/19q-codele-
tions, and the second phase passes the remaining diffuse 
astrocytic tumors though a binary IDH-mutation classi-
fier. We trained and evaluated a host of machine learn-
ing classifiers that predicted IDH-mutations in adult 
diffuse astrocytic glioma. These classifiers were imple-
mented using the Python packages scikit-learn [50]. We 
used the Python package PyCaret [2] to prototype, tune, 
and calibrate our models. Area under the receiver oper-
ating characteristic curve (AUC) was maximized during 
model tuning. Random hyperparameter searches were 
conducted via tenfold cross-validation within the cross-
validation loop for cross-validated results, and on the 
entire training set for predictions on the four held-out 

http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx
http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx
http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx
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validation sets. We report results from L2-penalized 
logistic regression, random forest, multilayer percep-
tion, and support vector machine with a radial kernel, as 
well as an ensemble of these models. All cross-validated 
results are reported as the average of 1000 cross-valida-
tion trials. All hyperparameter choices, including model 
class, were made during cross-validation and only one 
model was applied to the independent validation data-
sets and the holdout TCGA validation set. All UMAP 
(Uniform Manifold Approximation and Projection) [44] 
embeddings were generated from gene-level GISTIC 
scores using 15 nearest neighbors and the Manhattan 
distance metric.

Interpretability
We used SHapley Additive exPlanations (SHAP), as 
implemented in the Python package shap [42], to inter-
pret our patient-level model predictions. The SHAP 
algorithm assigns a value to each feature used to repre-
sent a patient that indicates how responsible that fea-
ture is to the prediction the model gives to that specific 
patient. The SHAP algorithm also considers all features 
at once, rather than independently, and thus captures 
feature interactions. To get patient-specific SHAP values 
for cross-validated results, we tracked each model that 
correctly or incorrectly classifies each sample over 1000 
cross-validation trials. Furthermore, because each model 
was calibrated, we had to average the SHAP value for 
each uncalibrated base estimator for each of 10 calibra-
tion folds per model before averaging these values across 
all cross-validation trials in which the sample was cor-
rectly classified and all of those in which the sample was 
incorrectly classified. This process led to two SHAP val-
ues for each feature for each patient: the average SHAP 
value for the cross-validation trials during which the 
patient was misclassified and the average SHAP value for 
cross-validation trials during which the patient was cor-
rectly classified.

Statistical analysis
We evaluated the performance of our models with the 
following metrics: area under the receiver operating 
characteristic curve (AUC), balanced accuracy (bal accu-
racy), F1 score, precision, recall, and Mathews correla-
tion coefficient (MCC). Their definitions are given below 
in terms of true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN) predictions.

F1 =
TP

TP +
1
2
(FP + FN )

, Precision =
TP

TP + FP
,

Recall =
TP

TP + FN

We focused primarily on the AUC and MCC scores. 
We preferred MCC over F1, accuracy, precision, and 
recall because MCC does not depend on which class we 
designate as positive and because MCC considers all four 
prediction categories (TP, FP, TN, FN) and their magni-
tudes [14]. We optimized for high AUC rather than MCC 
during model training, because AUC gives a better meas-
ure of model robustness.

Results
Overview of global SCNAs in adult diffuse gliomas
SCNA data is a promising predictor of adult diffuse 
glioma molecular subtype, because each adult diffuse 
glioma subtype exhibits a distinctive DNA structure. Oli-
godendrogliomas are characterized by the presence of an 
IDH mutation and a 1p/19q-codeletion (Fig. 1A). Adult-
type IDH-wildtype diffuse gliomas predominantly display 
simultaneous gain of whole chromosome 7 and loss of 
whole chromosome 10 (+ 7/ − 10) (Fig. 1B). IDH-mutant 
astrocytomas have comparatively fewer large-scale 
SCNAs (Fig.  1C). Furthermore, unsupervised methods 
have shown that these subtypes are largely separable by 
SCNA data even in low dimensions (Fig. 1D) [7, 16, 17]. 
This indicates that a supervised system can robustly pre-
dict patient adult diffuse glioma molecular subtype from 
tumor SCNA data.

SCNA-based models can also incorporate domain 
knowledge regarding glioma subtype DNA structure, 
which would otherwise be difficult to learn in a purely 
data-driven manner. All oligodendrogliomas harbor 
translocation-mediated 1p/19q-codeletions that result 
in single-copy loss of chromosome arms 1p and 19q 
and intact status of chromosome arms 1q and 19p [30]. 
Because 1p/19q-codeletions are directly computable 
from SCNA data, we proposed a two-stage classification 
system for the prediction of adult diffuse glioma molecu-
lar subtype in which 1p/19q-codeleted oligodendroglio-
mas are identified in the first phase and the remaining 
diffuse astrocytic tumors are passed through a binary 
IDH mutation classifier in the second phase (Fig.  1D). 
Additionally, we computed + 7/ − 10 to verify that all 
tumors in our TCGA training were adult diffuse glio-
mas. Histological lower-grade IDH-wildtype diffuse glio-
mas without confirmed + 7/ − 10, EGFR amplification, 

Balanced Accuracy =
1

2

(

TP

TP + FN
+

TN

TN + FP

)

MCC =
TP · TN − FP · FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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or TERT promoter (TERTp) mutation are considered to 
be pediatric-type diffuse gliomas and are genetically and 
biologically distinct from adult diffuse gliomas, and thus 
less relevant to our current study [8, 40, 41].

Determining thresholds for 1p/19q‑codeletion
Calling 1p/19q-codeletions from gene-level SCNA data 
requires setting a threshold for the proportion of genes 
lost on chromosome arms 1p and 19q and the proportion 
of genes retained on chromosome arms 1q and 19p. To 
establish such a threshold, we considered TCGA SCNA 
data derived from three different pipelines (UCSC hg19, 
GDC hg19, GDC hg38) to account for variation in data 
processing. For each pipeline, we observed that an 85% 
threshold for gene loss on chromosome arms 1p, 1q, 19p, 
and 19q separated all oligodendrogliomas (N = 171) from 
all astrocytic tumors (N = 615) in our TCGA training set, 
including several IDH-mutant astrocytomas that would 
have been considered 1p/19q-codeleted oligodendroglio-
mas using slightly lower thresholds (Fig.  2A, Additional 

file  2: Fig.  2A). This 85% threshold was also optimal or 
nearly optimal for two independent validation sets con-
taining at least 50 1p/19q-codeleted oligodendrogliomas 
published by Capper et al. [10] (MCC = 0.97) and Jonsson 
et  al. [31] (MCC = 0.97), respectively (Fig.  2B). Between 
these two validation sets, only one (0.1%) astrocytic 
tumor was predicted to be 1p/19q-codeleted (Additional 
file 2: Fig. 2B, C). Although six (4.6%) labeled oligoden-
drogliomas were predicted to be astrocytic tumors, four 
of the six misclassified oligodendrogliomas harbored 
monosomy of chromosome 1 and/or monosomy of chro-
mosome 19, which is inconsistent with the unbalanced 
translocation mechanism associated with the develop-
ment of oligodendrogliomas (Additional file  2: Fig.  2B, 
D) [27, 30]. Therefore, these were not model errors. The 
two other misclassified oligodendrogliomas fail to meet 
our 85% threshold, because one sample lost only 75% of 
1p and the other only 71% of 19q. Regardless, we did not 
lower our threshold to include these patients, because 
lower thresholds risked misclassifying more IDH-mutant 

Fig. 1  Somatic copy number alteration (SCNA) profiles of adult diffuse glioma molecular subtypes in the TCGA. A–C Copy number frequency plots 
showing SCNA profiles for each of the three dominate molecular subtypes of adult diffuse glioma. D UMAP landscape of SCNA data highlighting 
the separation of the major molecular subtypes based solely on global copy number information. E Overview schematic of our approach to use 
SCNA profiles to predict IDH status in diffuse gliomas
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astrocytomas as 1p/19q-codeleted oligodendrogliomas. 
To assess the robustness of our 1p/19q-codeletion screen 
to genome coverage, this screen was applied to ULP-
WGS derived TCGA SCNA data available for patients 
in the TCGA training set (556 astrocytic tumors, 169 
oligodendrogliomas). Only one tumor was misclassified 
(MCC = 0.996), suggesting that even ultra-low coverage 
(0.1x) is sufficient for accurate identification of 1p/19q-
codeletions. All 1p/19q-codeletion predictions are given 
in the Additional file 1: Table 4.

Determining thresholds for + 7/ − 10
Knowledge of + 7/ − 10 status was required to verify that 
all histologically-defined WHO grades 2 and 3 IDH-
wildtype gliomas in our TCGA training set were adult-
type diffuse gliomas [40, 41]. To ascertain + 7/ − 10 
status, we determined a threshold for the proportion of 
genes necessary to determine aneuploidy. This was done 
by identifying all TCGA patients whose adult glioma 
verification depended on their + 7/ − 10 status and set-
tling on the highest threshold for + 7/ − 10 that did not 
exclude tumors whose age and outcome were consist-
ent with quintessential IDH-wildtype glioblastoma. A 
50% threshold for + 7/ − 10 was the highest threshold 
capable of calling a 58-year-old short-term survivor 
(OS = 13  months) without EGFR amplification an adult 
diffuse glioma (Additional file 2: Fig. 3A). Given that the 
next lowest threshold that would have changed a TCGA 
patient’s adult glioma status was below 10%, we adopted 
50% as our threshold for determining + 7/ − 10 status 
(Fig.  2C). As desired, this threshold divided histological 
lower-grade IDH-wildtype gliomas without EGFR ampli-
fication into two groups with significantly different age 
distributions (median age 35 vs. 59.5, p < 0.0005, Mann–
Whitney U-test), especially when TERTp mutation 
status was accounted for (median age 26) (Fig. 2D, Addi-
tional file  2: Fig.  3B, C). Furthermore, a 50% threshold 
separated the bimodal distributions of + 7 and − 10 for 
IDH-wildtype diffuse gliomas of all histological grades 

in three independent validation sets in addition to the 
TCGA validation set (Fig. 2E). Finally, applying this 50% 
threshold to our TCGA training data, we excluded 21 
TCGA patients: 12 lacked + 7/ − 10, EGFR amplification, 
and TERTp mutation and 9 lacked EGFR amplification 
and + 7/ − 10 and had unknown TERTp mutation status 
(Fig. 2F, Additional file 2: Fig. 3D).

IDH mutation classifier design
Justification of design decisions
The 1p/19q-codeletion screen that comprises the first 
phase of our adult diffuse glioma molecular subtype pre-
dictive system passes predicted adult astrocytic gliomas 
to the system’s second phase IDH mutation classifier. To 
build this classifier, we trained a logistic regression (LR) 
model, optimized to maximize AUC, on hg19-aligned 
SCNA data (GDC hg19) downsampled to chromosome 
arm-level resolution. The choices made during model 
development were justified by cross-validated experi-
ments on the 615 adult astrocytic gliomas in our TCGA 
training set. Downsampled chromosome arm-level 
SCNA data performed as well or better than other low-
dimensional SCNA input representations including PCA 
reduced SCNA data (Fig.  3A) and were more interpret-
able and similarly robust to noise. Indeed, downsampling 
to chromosome arm-level resolution had a pronounced 
smoothing effect on SCNA data obtained from older 
cytogenetic array technologies, such as the REM-
BRANDT study SCNA data (Fig.  3B) [28]. We trained 
our model to maximize AUC performance during its 
parameter search and used the GDC hg19 version of the 
TCGA SCNA data for our training samples, because this 
combination of metric optimizer and dataset yielded the 
best cross-validated results (Fig. 3C). We selected logistic 
regression as our model class, because our LR model out-
performed (AUC = 0.990 ± 0.001, MCC = 0.935 ± 0.006) 
a suit of other machine learning classifiers across nearly 
all evaluation metrics (Fig. 3D). All predictions are given 
in the Additional file 1: Table 5.

(See figure on next page.)
Fig. 2  Determining rational thresholds for establishing 1p/19q-codeletion and + 7/ − 10 status. A A scatter plot showing the percentage of genes 
lost on chromosome arm 1p against the percentage of genes lost on 19q for all tumors with all of three TCGA SCNA pipelines showing at least 50% 
gene loss on 1p and 19q and at most 85% genes loss on 1q and 19p. All tumors that satisfy an 85% threshold on all four chromosome arms are 
predicted to be 1p/19q-codeleted oligodendrogliomas; all those that do not are predicted to be IDH-mutant astrocytomas. Lines connect points 
that represent the same patient. B An 85% threshold for 1p/19q-codeletions is optimal for the TCGA training set and an independent validation 
dataset published by Capper et al. as measured by MCC. It is nearly optimal on an independent validation dataset published by Jonsson et al. C 
A scatter plot of percent gain/loss of genes on chromosomes 7 and 10, respectively, for 91 histological lower-grade TCGA IDH-wildtype gliomas. 
All those without EGFR amplification and at least 10% gene gain/loss on chromosomes 7 and 10 also satisfy a 50% threshold. D Histological lower 
grade TCGA IDH-wildtype gliomas without EGFR amplification who do not meet a 50% threshold for + 7/ − 10 are much younger than those who 
do. This age difference increases when TERTp mutation status is accounted for. E A 50% threshold for + 7/ − 10 separates + 7 and − 10 from intact 
7 and intact 10 across three independent validation sets and the TCGA holdout validation set. F Of all TCGA histological lower-grade IDH-wildtype 
diffuse gliomas, 21 do not or cannot be confirmed to meet the WHO 2021 criteria for adult diffuse glioma
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Fig. 2  (See legend on previous page.)
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Model calibration facilitates the rejection of inaccurate 
predictions
To recognize patients whose model prediction may not 
be reliable, such as patients whose tumor is not an adult-
type diffuse glioma, we calibrated our model’s output 
probabilities and gave the option to reject low-confidence 
predictions. Such calibration forced the model’s output 
probabilities to better represent prediction confidence, 

which should be low when the model evaluates tumors 
that do not resemble tumors in its training set. As desired, 
we saw that our model performed better across all met-
rics on patients whose prediction confidence was above 
70% (AUC = 0.992 ± 0.001, MCC = 0.970 ± 0.004) com-
pared to patients with lower confidence predictions 
(AUC = 0.75 ± 0.05, MCC = 0.39 ± 0.1), despite excluding 
only 5% of the dataset (Fig. 3E, F).

Fig. 3  Cross-validated IDH mutation classifier development. A Cross-validated results showed that IDH mutation logistic regression classifiers 
trained on chromosome arm resolution SCNA data performed better than classifiers trained on PCA reduced gene-level or PCA reduced 
cytoband-level SCNA data. B Downsampling gene-level SCNA data to chromosome arm resolution smoothed noisy SCNA data derived from 
older cytogenetic arrays. C A logistic regression model trained on TCGA SCNA data aligned to hg19 and optimized for maximizing the AUC score 
performed better than other parameter choices. D Logistic regression mostly outperformed other model classes, including an ensemble of all listed 
models, across five metrics. E Our model performance increased monotonically when restricted to samples of increasing prediction confidence. This 
indicated that the calibration of our model’s output probabilities was effective. Standard deviation values for each metric over 1000 cross-validation 
trials are shaded in. F Restricting model predictions to those made with confidence greater than 0.7 greatly increased model performance
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Fig. 4  Interpretation of cross-validated results. A All gliomas in the TCGA training set that were misclassified at least once over 1000 cross-validation 
trials. Only 3.4% of IDH-wildtype gliomas and 2.3% of IDH-mutant astrocytomas are misclassified in over 50% of trials. Misclassified IDH-mutant 
astrocytomas are disproportionately WHO grade 4. B Misclassified samples show regionality on a UMAP SCNA landscape: most misclassified 
IDH-mutant astrocytomas are found in an area of predominantly correctly classified IDH-wildtype tumors, and most misclassified IDH-mutant 
tumors are found in the area dominated by correctly classified IDH-mutant astrocytomas. Point-size of misclassified samples indicates the frequency 
of misclassification. C SHAP results of correctly classified IDH-wildtype tumors indicate that chromosome arm 10q drove correctly classified 
IDH-wildtype predictions. Each patient is assigned a point per chromosome arm. The magnitude of each point’s vertical coordinate is an indication 
of how influential the average SCNA status of the chromosome arm was to the classifier’s prediction. Positive vertical values favor IDH-wildtype 
predictions; negative values indicate a preference for IDH-mutant astrocytoma predictions. The color of each point corresponds to the average 
chromosome arm SCNA value: blue indicates loss, and red indicates gain. The magnitude of the bars drawn for each chromosome arm is the 
average chromosome arm SHAP score for all patients plotted; the bar’s color indicates the average SCNA state across all patients plotted. D SHAP 
results of correctly classified IDH-mutant astrocytomas; intact 10q drives these predictions. E A visualization of average SHAP score and average 
chromosome arm SCNA status over all correct and incorrect model predictions of IDH-wildtype and IDH-mutant astrocytomas shows the top 12 
chromosome arms’ influence on model predictions. The height of groups of connected points orders each chromosome arm’s average influence 
(SHAP score) on correct predictions. The x-axis indicates the average extend of SCNA loss or gain of each chromosome-arm for the cohort of 
patients each point represents. The size of each point represents the average influence the chromosome arm has. Solid lines connect correct or 
incorrect predictions; dotted lines connect groups of the same IDH-subtype. Crossing dotted lines identify chromosome arms whose SCNA profile 
mimics the opposite IDH subtype when mistaken by our model
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Interpretation of IDH mutation classifier cross‑validation 
predictions
Misclassified patients were rare and involved + 7/ − 10
Given the robustness of our IDH mutation classifier, 
we were particularly interested in the rare patients 
it misclassified. Across 1000 cross-validation trials, 
3.4% (N = 12) of IDH-wildtype glioblastomas and 2.3% 
(N = 6) of IDH-mutant astrocytomas were misclas-
sified in at least 50% of trials (Fig.  4A). Misclassified 
IDH-mutant astrocytomas had increased copy number 
burden, especially on chromosome 10, were dispropor-
tionately WHO grade 4 (p < 0.0001, Fisher’s Exact), and 
followed a clinical course significantly worse than cor-
rectly classified IDH-mutant astrocytomas (OS = 2.8 
vs 7.3  years, HR = 1.97, p < 0.001, log-rank) (Addi-
tional file  2: Fig.  4A, B, C). Most misclassified IDH-
mutant astrocytomas were embedded in a cluster of 
IDH-wildtype tumors defined by + 7/ − 10 on a UMAP 

SCNA landscape, indicating that the DNA structure of 
these tumors resembles that of IDH-wildtype glioblas-
tomas (Fig. 4B). On the other hand, misclassified IDH-
wildtype glioblastomas tended to have fewer SCNAs 
than their correctly classified counterparts, especially 
on chromosomes 7 and 10, and primarily inhabited 
a region on the UMAP landscape occupied by IDH-
mutant astrocytomas (Additional file 2: Fig. 4D). Unlike 
IDH-mutant astrocytomas, however, no difference in 
histological grade or patient outcome between cor-
rectly and incorrectly classified IDH-wildtype glioblas-
tomas was observed (Additional file 2: Fig. 4E, F).

Chromosome arm 10q holds greatest influence over IDH 
mutation classification
The SHapley Additive exPlanations (SHAP) algorithm 
assigns a value to each chromosome arm for each patient 
that indicates how responsible that chromosome arm’s 

Fig. 5  Validation results for four independent glioma datasets. a The IDH mutation classifier’s performance increased with prediction confidence on 
four validation sets, confirming the utility of model calibration. b ROC curves show that our LR model performs well on four separate validation sets. 
c Besides AUC, our model performs well four additional metrics. Recall is significantly higher than precision across validation sets, indicating that the 
model performs better on IDH-mutant astrocytomas than IDH-wildtype tumors. L Misclassified IDH-wildtype tumors are significantly younger than 
their correctly classified counterparts in three validation datasets (Mann–Whitney U). e, f Misclassified IDH-wildtype tumors in the TCGA validation 
set and a dataset published by Jonsson et al. tend to have better outcomes than correctly classified IDH-wildtype diffuse gliomas. g, h Plots of 
the results of two Cox proportional hazard models of histological WHO grade 4 IDH-wildtype glioblastomas that incorporated our model’s IDH 
mutation prediction, EGFR amplification, and + 7/ − 10
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SCNA status is to the prediction the model gives that 
patient [42]. A SHAP analysis of our IDH mutation clas-
sifier’s cross-validated predictions indicated that loss of 
chromosome arm 10q drove IDH-wildtype predictions 
and that gain of chromosome arms 20q and 1p were 
more discriminative features than 10p loss or 7p and 7q 
gain (Fig.  4C). Similarly, intact or marginal loss of 10q, 
intact 20q, intact chromosome 1, and marginal gains of 
10p drove correct IDH-mutant astrocytoma predictions 
(Fig.  4D). Unsurprisingly, intact 10q in IDH-wildtype 
gliomas or loss of 10q in IDH-mutant astrocytomas were 
the primary drivers of astrocytic tumor misclassification 
(Additional file 2: Fig. 5). In general, our model’s mistakes 
were intuitive: a small subset of tumors from each sub-
type exhibited SCNA patterns more consistent with the 
opposite subtype on chromosome arms weighed heavily 
by the model, especially chromosome arm 10q (Fig. 4E).

Validation of the IDH mutation classifier on three 
independent datasets and the TCGA validation dataset
Validation results
Our IDH mutation classifier performed well across 
three independent validation datasets and our hold-
out TCGA cohort of histological grade 4 patients with 
surrogate IDH labels not found from IDH sequencing. 
As observed during cross-validation, model perfor-
mance increased with prediction confidence (Fig.  5A, 
Additional file  2: Fig.  6). When evaluated on patients 
with model confidence greater than 70%, our IDH 
mutation classifier achieved AUC scores greater than 
0.95 on each dataset (Fig.  5B). Recall was substan-
tially higher than precision, indicating that the model 
performed better on IDH-mutant astrocytomas than 
IDH-wildtype gliomas (Fig.  5C). Our IDH mutation 
classifier also performed well (AUC = 0.98) on a version 
of our TCGA validation datasets whose SNCA data 
was derived from ULP-WGS data, indicating that this 
model is robust to ultra-low genome coverage (Addi-
tional file 2: Fig. 7). Results for model predictions on all 
patients with diffuse astrocytic gliomas are given in the 
Additional file 1: Table 6 and Additional file 2: Fig. 8.

Misclassified IDH‑wildtype diffuse gliomas were younger 
and lived longer
Misclassified IDH-wildtype tumors were significantly 
younger than correctly classified IDH-wildtype tumors 
in our TCGA validation set (p < 0.001, Mann–Whit-
ney U test) and validation sets published by Jonsson 
et al. (p < 0.01, Mann–Whitney U test) and Capper et al. 
(p < 0.001, Mann–Whitney U test) (Fig.  5D). On two 
validation sets that had patient outcome data, patients 
with IDH-wildtype gliomas that were predicted to be 
IDH-mutant astrocytomas demonstrated significant 

(p = 0.016, Jonsson et al., log-rank) or marginally signifi-
cant (p = 0.073, TCGA validation, log-rank) improve-
ment in survival compared to correctly predicted 
IDH-wildtype gliomas (Fig.  5E, F). Interestingly, these 
results remained significant when restricted to histo-
logical WHO grade 4 tumors (Additional file  2: Fig.  9). 
No consistent age or survival difference was observed 
in IDH-mutant astrocytomas (Additional file 2: Fig. 10). 
Likewise, the same IDH-wildtype glioma age and out-
come associations observed in the other validation sets 
did not hold in the GLASS, likely due to patient inclusion 
bias, which is inherent in datasets made up of tumors 
known to have second resections (Additional file  2: 
Fig. 11) [16].

Because our model’s misclassified IDH-wildtype 
patients were associated with the absence of + 7/ − 10 
and younger age, attributes of pediatric-type tumors, 
we tested whether the status cIMPACT-NOW update 
3 [8] molecular markers (which are incorporated in the 
upcoming WHO CNS tumor classification fifth edi-
tion [40]) explained the improved survival of misclassi-
fied histological WHO grade 4 IDH-wildtype tumors. 
The status of + 7/ − 10 and EGFR amplification, but not 
TERTp mutation, were used in multivariate Cox propor-
tional hazard models [19] because too few TERTp muta-
tion labels were available. In these analyses, the hazard 
ratio of the model’s IDH mutation prediction was higher 
than either that of + 7/ − 10 or EGFR amplification in the 
TCGA validation set and Jonsson et al. dataset, although 
the confidence intervals varied (Fig.  5G, H). This evi-
dence indicated that the observed survival benefit of mis-
classified histological grade 4 IDH-wildtype glioblastoma 
was due more to the model’s prediction than + 7/ − 10 
or EGFR amplification status. Complementary univari-
ate tests of combinations of + 7/ − 10 and EGFR amplifi-
cation in the TCGA validation set and the Jonsson et al. 
validation set showed inconsistent prognostic utility of 
these markers among histological grade 4 IDH-wildtype 
glioblastoma (Additional file  2: Fig.  12). For example, 
EGFR application was not prognostic in the Jonsson et al. 
dataset, and the absence of + 7/ − 10 did not convey sig-
nificant survival benefit in the TCGA validation set. With 
limited TERTp mutation status information, the clinical 
utility of the cIMPACT-NOW update 3 molecular mark-
ers cannot be fully assessed, but the improved survival of 
misclassified histological WHO grade 4 IDH-wildtype 
tumors is unlikely a reflection of these molecular markers 
as we measure them.

Many misclassified IDH‑wildtype glioblastomas harbor 
pediatric‑type SCNA profiles
Of all misclassified histological WHO grade 4 IDH-
wildtype glioblastoma patients in our four validation 
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sets, only 19% showed IDH-wildtype glioblastoma-
like SCNA features + 7/ − 10 or EGFR amplification 
(Additional file  2: Fig.  13A). While TERTp mutation 
status was unavailable, pediatric tumors, originally 
diagnosed as IDH-wildtype glioblastoma, were present 
in the cohort of misclassified IDH-wildtype glioblasto-
mas published by Capper et al. In this dataset, 88% of 
misclassified IDH-wildtype samples were diffuse hemi-
spheric glioma, H3 G34-mutant, WHO grade 4 while 
only 2% of correctly classified samples were diffuse 
hemispheric glioma, H3 G34-mutant (p < 1e−22, Fish-
er’s exact, Additional file  2: Fig.  13B). The presence of 
these tumors, common in adolescent and young adults, 
explained the age difference between correctly and 
incorrectly classified IDH-wildtype glioblastomas in 
the dataset published by Capper et al. (Additional file 2: 
Fig. 13C) [32].

IDH and 1p/19q‑codeletion prediction results 
in the REMBRANDT dataset
REMBRANDT predictions and outcomes comparisons
Prior to applying our system to the REMBRANDT 
dataset, we retrained the IDH mutation classifier on all 
patients in our training and validation sets other than 
the 41 diffuse hemispheric glioma, H3 G34-mutant, 
WHO grade 4 provided by Capper et  al. (N = 1729). 
Predictions on all REMBRANDT patients with model 
confidence greater than 70% show that predicted IDH-
wildtype glioma, regardless of tumor histological grade, 
have similar survival trajectories and median overall sur-
vival (OS = 1.1  years) as IDH-wildtype glioblastomas in 
the TCGA (OS = 1.2 years) (Fig. 6A). On the other hand, 
predicted IDH-mutant astrocytomas (OS = 3  years) and 
predicted IDH-mutant and 1p/19q-codeleted oligoden-
drogliomas (OS = 3.1 years) in the REMBRANDT dataset 

Fig. 6  Adult diffuse glioma molecular subtype predictions for the REMBRANDT study. A Predictions for all REMBRANDT patients show typical 
median survival for IDH-wildtype glioblastoma but worse outcomes for predicted IDH-mutant astrocytomas and oligodendrogliomas compared 
to those in the TCGA. B Unlike histologically-defined glioblastomas, histological astrocytomas and oligodendrogliomas in the REMBRANDT fair 
significantly worse than TCGA histological astrocytomas and oligodendrogliomas. C An 85% threshold for chromosomes 1p, 1q, 19p, and 19q 
successfully captures the densest area of patients who pass a 50% threshold for 1p/19q-codeletion. D Within the cohort of REMBRANDT histological 
astrocytomas, predicted IDH-wildtype tumors fair significantly worse than predicted IDH-mutant astrocytomas. E Within the cohort of REMBRANDT 
histological glioblastomas, predicted IDH-wildtype tumors’ outcomes are significantly worse than predicted IDH-mutant astrocytomas. F Predicted 
IDH-wildtype tumors do not show a subpopulation of young patients that would indicate the presence of pediatric-type tumors or misclassified 
IDH-mutant astrocytomas. G SCNA profiles of predicted IDH-wildtype tumors that live longer than 3 years. Three tumors show + 7/ − 10, of which 
two show co-gain of chromosomes 19 and 20, and are likely IDH-wildtype tumors. The remaining tumor shows mild losses on chromosome 10. H 
SCNA profiles of predicted IDH-mutant astrocytoma that live less than 12 months. None show SCNA characteristics of IDH-wildtype glioblastoma, 
suggesting that they are correctly classified IDH-mutant astrocytomas or possibly IDH-wildtype glioblastomas with TERTp mutations
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have significantly shorter median survival than TCGA 
IDH-mutant astrocytomas (OS = 7.3  years) and 1p/19q-
codeleted oligodendroglioma (OS = 11.2  years), respec-
tively. This discrepancy can be attributed to differences in 
average outcomes of histological astrocytomas (OS = 3.0 
vs. 5.2  years) and histological oligodendrogliomas 
(OS = 3.1 vs. 9.5 years) between the REMBRANDT study 
and the TCGA (Fig. 6B). Predicted REMBRANDT IDH-
mutant astrocytomas are also disproportionately older 
and higher grade than TCGA IDH-mutant astrocytomas, 
although the same is not true of predicted REMBRANDT 
and TCGA 1p/19q-codeleted oligodendrogliomas (Addi-
tional file 2: Fig. 14). Results for model predictions on all 
REMBRANDT patients are given in the Additional file 1: 
Table 7 and Additional file 2: Fig. 15.

REMBRANDT 1p/19q‑codeletion screen highlights limitations 
of histological only diagnosis
Our REMBRANDT 1p/19q-codeleted oligodendro-
glioma screen captured the densest area of tumors with 
significant gene losses on chromosome arms 1p and 
19q, consistent with the 1p/19q-codeletion screens on 
our training and validation sets (Fig.  6C). As reported 
elsewhere, our predictions highlight the difficulty of 
absolutely distinguishing astrocytomas from oligoden-
drogliomas based on histomorphology alone [22, 53]. 
Only 46% of REMBRANDT histological oligodendroglio-
mas harbor predicted 1p/19q-codeletions, and only 48% 
of REMBRADNT tumors harboring predicted 1p/19q-
codeletions were diagnosed as histological oligodendro-
glioma (Additional file 2: Fig. 16A). Visual inspection of 
patient copy number profiles showed clear evidence of 
1p/19q-codeletions in our predicted oligodendroglioma 
patients (Additional file 2: Fig. 16B). Similarly, in patients 
diagnosed with oligodendroglioma for whom we did not 
find 1p/19q-codeletions, we saw that most (5/6) tumors 
that lose 1p harbor monosomy chromosome 19, prohib-
iting a 1p/19q-codeletion (Additional file  2: Fig.  16C). 
The exception was a single patient with full loss of 1p 
and intact 1q and 19p, but whose proportion of 19q loss 
falls slightly below our 85% threshold (79%): this patient’s 
tumor was likely an oligodendroglioma (Additional file 2: 
Fig. 16D).

REMBRANDT IDH mutation classifier results on histological 
astrocytic tumors
Following our screen for oligodendrogliomas, we applied 
our IDH-mutation classifier to patients diagnosed with 
histological astrocytoma and glioblastoma not harboring 
predicted 1p/19q-codeletions. Our IDH mutation predic-
tions on histological astrocytomas generated a dramatic 
survival difference between predicted IDH-wildtype 

gliomas and IDH-mutant astrocytomas (HR = 1.43, 
p = 0.003, log-rank) and appeared to correctly iden-
tify histological lower-grade IDH-wildtype gliomas 
(OS = 1.1 years) now considered to be IDH-wildtype glio-
blastomas (Fig. 6D). Histological glioblastomas predicted 
to be IDH-wildtype glioblastomas had the same median 
overall survival (1.1  years), and their survival trajectory 
was significantly worse than those of histological grade 4 
tumors that were predicted to be IDH-mutant astrocyto-
mas (HR = 0.78, p = 0.004, log-rank) (Fig. 6E).

Possible IDH mutation classifier REMBRANDT errors
To identify possible IDH mutation classification errors 
on the REMBRANDT dataset, we examined abnormally 
young or long-living predicted IDH-wildtype glioblasto-
mas as well as abnormally old or short-living predicted 
IDH-mutant astrocytomas. We did not observe a sub-
set of significantly younger patients within the cohort of 
predicted IDH-wildtype patients which may have repre-
sented misclassified IDH-mutant astrocytomas (Fig. 6F). 
Of the four predicted IDH-wildtype glioblastoma 
patients that lived longer than three years, two harbored 
hallmark + 7/ − 10 and EGFR amplification as well as co-
gain of chromosomes 19 and 20, a documented marker 
for long-term survivors in IDH-wildtype glioblastoma 
[25] (Fig.  6G). These tumors were likely correctly clas-
sified. The remaining tumors were inconclusive. One 
lacked + 7/ − 10 but its patient’s age (57  years old) was 
consistent with IDH-wildtype glioblastoma, and the other 
harbored + 7/ − 10 but was atypically young (32  years 
old). Both lacked EGFR amplification. Among predicted 
IDH-mutant astrocytomas, we observed an older sub-
set of patients (age range 65–80, N = 4). However, these 
tumors had few IDH-wildtype glioblastoma-like SCNA 
features: none had + 7/ − 10 and only one displayed 
EGFR amplification (Additional file 2: Fig. 17). Similarly, 
of the six IDH-mutant astrocytomas that lived less than 
12 months, none harbored + 7/ − 10 or EGFR amplifica-
tion, and two had nearly zero copy number alterations 
(Fig. 6H). These tumors were likely IDH-mutant astrocy-
tomas, although the lack of TERTp mutation knowledge 
may have hidden IDH-wildtype glioblastomas.

Discussion
We developed a system that predicts adult diffuse glioma 
molecular subtype from SCNA data, verified its accu-
racy on three independent validation datasets in addi-
tion to the TCGA validation dataset, and applied it to the 
retrospective REMBRANDT study. In a platform-inde-
pendent manner, this system can robustly assign molec-
ular subtype labels to patients with SCNA data derived 
from several molecular methods, including SNP-array, 
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methylation array, whole-exome sequencing, and whole-
genome sequencing. This is relevant because retrospec-
tive glioma studies with SCNA data, but no molecular 
subtype information, can be transformed into effective 
validation datasets for contemporary research. Further-
more, the gene-level thresholds we proposed for calling 
1p/19q-codeletions and + 7/ − 10 are applicable to all 
glioma datasets with SCNA data, regardless of whether 
IDH information is available.

The 85% threshold we used for the 1p/19q-codeletion 
screen in our system’s first phase leveraged data from 
786 gliomas and was validated on data from 940 tumors 
across two datasets. Despite the abundance of evidence 
supporting this threshold, we recommend visually 
inspecting the SCNA profiles of patients who fall near 
this threshold. We suspect that there exist IDH-mutant 
astrocytomas that lose 1p and 19q by means other than 
translocation and should not be considered 1p/19q-
codeleted. We identified one such patient (Additional 
file 2: Fig. 2C) who also showed remarkably high SCNA 
burden. We conjecture that in this case 1p and 19q loss, 
along with other large-scale SCNAs, may be the result 
of stochastic processes. Accordingly, tumors harboring 
high SCNA burden that are predicted to harbor 1p/19q-
codeletion by our system should be flagged for closer 
examination. Conversely, there are rare 1p/19q-codeleted 
oligodendrogliomas that do not meet our 1p/19q-codele-
tion threshold. Having observed two such tumors (Addi-
tional file 2: Fig. 2E), we suggest that tumors falling just 
shy of our 1p/19q-codeletion threshold be inspected for 
oligodendroglioma-like SCNA patterns outside of chro-
mosome arms 1p and 19q. Low tumor cellularity may 
explain why some oligodendroglioma gliomas appear to 
lose significantly less than 100%, and occasionally fewer 
than 85%, of genes on chromosome arms 1p and 19q. It 
is also conceivable that IDH-wildtype tumors may meet 
our 1p/19q-codeletion threshold, but we saw no evidence 
for this.

Our threshold for + 7/ − 10 will benefit from fur-
ther corroboration. A rigorous search for a threshold 
for + 7/ − 10 requires more histological lower-grade IDH-
wildtype tumors with available TERTp mutation status 
and outcome data in addition to SCNA data. Only 12 
such tumors were available in the TCGA dataset. With-
out TERTp mutation status, it is not possible to define 
two groups of histologically-defined WHO grades 2 or 
3 IDH-wildtype glioma whose status as either pediatric-
type gliomas or IDH-wildtype glioblastomas depends on 
the threshold set for + 7/ − 10. Therefore, it is difficult to 
claim a particular threshold is optimal. Instead, based on 
our analysis, we suggest that a 50% threshold for + 7/ − 10 
is reasonable. Additional knowledge of TERTp mutation 

status is also needed for a rigorous analysis of the prog-
nostic value of cIMPACT-NOW update 3 criteria in 
histological grade 4 IDH-wildtype glioblastoma. Our 
analysis of + 7/ − 10 and EGFR amplification did not 
consistently show a survival benefit among histological 
WHO grade 4 IDH-wildtype tumors that lacked these 
markers, but other studies have shown this difference 
[23]. These studies were able to identify more “triple neg-
ative” (no + 7/ − 10, no EGFR amplification, no TERTp 
mutation), primarily because their method for + 7/ − 10 
determination was less sensitive–another reason to 
refine our threshold for + 7/ − 10. Knowledge of TERTp 
mutational status is also needed for tumor types besides 
IDH-wildtype glioma. For example, emerging evidence 
suggests that TERTp mutations may convey positive 
prognoses in IDH-mutant astrocytomas [4].

In the second phase of our system, we observed that 
excluding low-confidence predictions improved the clas-
sifier’s performance and may have filtered out unfamiliar 
tumors, such as non-adult diffuse glioma likely. However, 
our model calibration strategy does not reject all non-
adult diffuse glioma, such as many diffuse hemispheric 
glioma, H3 G34-mutant in the dataset published by Cap-
per et al. In future model iterations, we will train a multi-
class classifier which will help identify other tumor types 
in the REMBRANDT dataset. Additional improvements 
include using data augmentation to generate synthetic 
WHO grade 4 IDH-mutant astrocytoma, especially 
those with losses on chromosome 10, which are under-
represented in our training set and are difficult to dis-
tinguish from IDH-wildtype glioblastoma. Additionally, 
ensembling our IDH mutation classifier with a model 
trained without chromosomes arms 7p, 7q, 10p, and 10q 
may improve the classification of IDH-wildtype tumors 
without + 7/ − 10.

We observed that misclassified histological WHO 
grade 4 IDH-wildtype glioblastomas tended to have bet-
ter outcomes than correctly classified WHO grade 4 
IDH-wildtype glioblastomas in our TCGA validation 
set and the dataset published by Jonsson et  al. Given 
that these tumors were all histological WHO grade 4, 
the existence of pediatric-type diffuse glioma does not 
explain their relatively favorable clinical course. We 
noted that these misclassified tumors rarely exhibit 
SCNA features commonly associated with IDH-wildtype 
glioblastoma such as + 7/ − 10 and EGFR amplification. 
It remains an open question whether histological WHO 
grade 4 IDH-wildtype glioblastoma without molecular 
features of IDH-wildtype glioblastoma should be con-
sidered less aggressive than their counterparts, but our 
results support this notion [23].
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Conclusions
The primary contribution of this work is the develop-
ment of a computational tool that accurately classifies 
the molecular subtype of patients’ tumors in retrospec-
tive adult diffuse glioma studies that have available SCNA 
data. We identified all patients with likely 1p/19q-code-
leted oligodendrogliomas, IDH-wildtype glioblastomas, 
and IDH-mutant astrocytomas in the REMBRANDT 
study in an effort to make the REMBRANDT study a 
better resource for validating diffuse glioma research. 
We also propose evidence-based thresholds for calling 
1p/19q-codeletions and + 7/ − 10 from gene-level SCNA 
data.
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