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Deep learning reveals disease‑specific 
signatures of white matter pathology 
in tauopathies
Anthony R. Vega1,5†  , Rati Chkheidze3†  , Vipul Jarmale1, Ping Shang2, Chan Foong2, Marc I. Diamond4,5,6  , 
Charles L. White III2,5,6   and Satwik Rajaram1,5*   

Abstract 

Although pathology of tauopathies is characterized by abnormal tau protein aggregation in both gray and white 
matter regions of the brain, neuropathological investigations have generally focused on abnormalities in the cerebral 
cortex because the canonical aggregates that form the diagnostic criteria for these disorders predominate there. 
This corticocentric focus tends to deemphasize the relevance of the more complex white matter pathologies, which 
remain less well characterized and understood. We took a data-driven machine-learning approach to identify novel 
disease-specific morphologic signatures of white matter aggregates in three tauopathies: Alzheimer disease (AD), 
progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). We developed automated approaches 
using whole slide images of tau immunostained sections from 49 human autopsy brains (16 AD,13 CBD, 20 PSP) 
to identify cortex/white matter regions and individual tau aggregates, and compared tau-aggregate morphology 
across these diseases. Tau burden in the gray and white matter for individual subjects strongly correlated in a highly 
disease-specific fashion. We discovered previously unrecognized tau morphologies for AD, CBD and PSP that may be 
of importance in disease classification. Intriguingly, our models classified diseases equally well based on either white 
or gray matter tau staining. Our results suggest that tau pathology in white matter is informative, disease-specific, and 
linked to gray matter pathology. Machine learning has the potential to reveal latent information in histologic images 
that may represent previously unrecognized patterns of neuropathology, and additional studies of tau pathology in 
white matter could improve diagnostic accuracy.
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Introduction
Tauopathies are a large and heterogeneous subset of neu-
rodegenerative disorders that include Alzheimer disease 
(AD), progressive supranuclear palsy (PSP), and cortico-
basal degeneration (CBD) [24, 34]. They are character-
ized by accumulation of phosphorylated tau protein. In 

all three diseases, neuropathological evaluations and 
neuroimaging studies have indicated widespread changes 
in tau in both the cerebral cortex (CTX) and white mat-
ter  (WM). Yet such studies have generally focused on 
tau aggregation in the cortex, mainly due to the higher 
prevalence of disease-specific canonical tau aggregates, 
and higher overall tau burden in some tauopathies (e.g., 
AD, PSP). While neuropathologic diagnostic criteria for 
tauopathies are mainly based on cortical aggregates with 
recognizable phenotypes (neurofibrillary tangles, neu-
ritic plaques, tufted astrocytes, astrocytic plaques, etc.) 
[4, 5, 10], even these may represent only a small subset of 
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potentially informative pathologic structures. In contrast, 
white matter pathology in most tauopathies typically 
lacks similarly recognizable individual aggregates, and 
consequently is much less well characterized [11, 12, 15, 
23, 37]. However, white matter involvement likely con-
tributes to clinical presentation and progression of these 
disorders. Thus, there is a pressing need for unbiased 
data-driven approaches to understand its pathophysi-
ologic significance.

White matter pathology in tauopathies is abundant 
and complex. Hence it is extremely difficult to manually 
quantify neuropathologic changes, integrate them over 
slides that may contain hundreds of thousands of aggre-
gates, and then identify aspects that are disease relevant. 
Visual inspection also has intrinsic human bias, under-
lying potential inconsistency in diagnosis. On the other 
hand, automated digital image analysis is ideally suited 
to reproducibly performing such intricate and repetitive 
tasks. As a result of recent advances in machine learn-
ing, specifically the emergence of deep learning (DL), 
automated approaches have improved classification 
accuracies across a variety of bio-image domains [3, 7, 
13, 25] and can more readily scale up to larger data sets. 
Machine learning techniques have recently been adopted 

for neuropathological applications and demonstrated 
their ability to recognize pathological aggregates with 
high accuracy [20, 32, 33]. These approaches have largely 
focused on recognizing canonical aggregates previously 
defined based on human observation, and mainly local-
ized in the gray matter.

Consequently, we developed deep learning 
approaches to better understand the role of white 
matter tau aggregates in AD, PSP and CBD by analyz-
ing AT8 stained whole slide images (WSI). We cre-
ated algorithms to (a) demarcate white matter regions 
(Fig.  1b); (b) identify tau aggregates and characterize 
their changes across diseases (Fig.  1c); and (c) com-
pare the disease classification of deep learning models 
trained on gray and white matter pathology (Fig.  1d). 
Our results indicate a strong, and disease-specific, 
relationship between tau burden in the gray and white 
matter, suggesting a common pathophysiological ori-
gin. Using unsupervised approaches, we determined 
that WM tau aggregates in AD, CBD and PSP are highly 
distinct, and we have identified disease-specific fea-
tures of aggregate morphology. Finally, we found that 
these tauopathies could be equivalently classified based 
on white or gray matter tau staining, underscoring the 
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Fig. 1  Schematic of analysis workflow. a Example images of AT8-stained WSI from AD, PSP, and CBD patients that form the basis of our analysis. 
b Pathologist annotation of cortex(cyan), white matter (magenta) and background (no color) regions were used to train a deep-learning model 
to segment these regions in WSI. c Characterization of white matter aggregates: A pathologist trained deep learning model was used to segment 
aggregates in the white matter, and for each aggregate, multiple features characterizing its size and shape were extracted. We then performed 
unsupervised analyses to test whether white matter aggregates in WSI from the same disease were more similar than those from different diseases. 
d Disease classification based on cortex and white matter: Separate deep learning models were trained for the cortex and white matter to predict 
disease status directly from image patches (without need for any human curation of features) and the performance of these two models was 
compared and contrasted
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importance of white matter pathology. Thus, machine 
learning has enormous potential to reveal unrecognized  
patterns in complex neuropathological images, and 
may help further classify tauopathies.

Methods
Neuropathologic evaluation, immunohistochemistry 
and whole slide scanning
Forty-nine autopsy brain cases were retrieved from the 
UT Southwestern Neuropathology archives, includ-
ing 16 cases diagnosed as AD, 13 cases as CBD, and 20 
cases as PSP (Additional file  1: Table  S1). Involvement 
of the frontal cortex and white matter is associated with 
advanced disease for all three tauopathies, and therefore 
the presence of tau aggregates in the frontal gray and 
white matter was the main inclusion criterion. All AD 
cases featured Braak neurofibrillary stages V and VI, and 
all CBD and PSP cases featured some degree of frontal 
cortical and white matter involvement. Since the major 
focus of this study was the tau pathology in the neocor-
tex and subjacent white matter, CBD and PSP cases with 
coexistent low levels of Alzheimer type neuropathologi-
cal change (Braak neurofibrillary stages I and II, where 
tau pathology is essentially restricted to the entorhinal 
cortex) were not excluded.

All sections were cut from formalin fixed, paraf-
fin embedded tissue blocks at 5 micron thickness and 
stained with anti-AT8 antibody (Thermo Scientific 
MN1020, 1:200 dilution) using Leica Bond III automated 
immunostaining platform. Monoclonal antibody AT8, 
first reported in 1992 by Mercken et al. [28], was devel-
oped against phosphorylated tau isolated from human 
Alzheimer disease brain. We selected this anti-phospho-
tau antibody because it has been used in laboratories 
worldwide for decades for the immunohistochemical 
detection of disease-associated phospho-tau in many dif-
ferent neurodegenerative conditions. In 2003, Arai et al. 
[1] investigated the differences in immunoreactivity of 13 
antibodies to epitopes spanning the entire length of the 
tau molecule to phospho-tau lesions in autopsy brain tis-
sue from subjects with Alzheimer disease, Pick disease, 
progressive supranuclear palsy, and corticobasal degen-
eration. While antibodies directed at epitopes within 
the microtubule binding domain of tau showed differ-
ent levels of immunoreactivity among these tauopathies, 
antibodies to the middle region of tau, including AT8, 
showed similar immunoreactivity among all 4 tauopa-
thies. Importantly, we also included exposure of tissue 
sections to concentrated formic acid preceding epitope 
retrieval and immunostaining, as this has been shown to 
maximize the specific immunoreactivity of tau lesions for 
use in quantitative image analysis applications [8].

AT8 stained slides were digitized using an Aperio 
ScanScope CS2 (Leica Biosystems, Buffalo Grove, Il) 
whole slide scanner at 20X magnification.

We note that only frontal regions were used for the 
analysis of cortical and white matter tau aggregation pat-
terns. However, to provide additional data to improve the 
accuracy of our classifier that distinguishes cortex from 
white matter, we additionally incorporated hippocampal, 
temporal, parietal and occipital regions from each case. 
All DL models described below were trained using either 
a Tesla p40 or v100 single Graphical Processing Units 
with the open-source package TensorFlow.

Model training for region (cortex vs white matter) 
identification
Data
For region identification (as opposed to disease/aggre-
gate analysis) a total of 37 WSIs (16 AD, 11 PSP, 10 CBD) 
imaged at 20X magnification (0.5 microns per pixel) 
were used for training and testing. Among these WSIs, 
21 were taken from the middle frontal gyrus, the focus of 
our study, while the remaining were taken from the hip-
pocampus, superior temporal gyrus, lateral parietal cor-
tex, and calcarine cortex. WSIs were first annotated by 
a trained neuropathologist, using the QuPath bioimage 
analysis software [2], to indicate cortex and white matter 
regions, as well as background areas. From each anno-
tated WSI, we generated an average of ≈ 12,000 image 
patches (128 × 128 microns = 256 × 256 pixel at 20× 
magnification) giving a total of ≈ 430,000 patches to be 
used as input for the DL model. WSIs (and correspond-
ingly the patches derived from them) were split using 
threefold cross validation, with random assignments of 
diseases to folds while ensuring that each fold contained 
the same proportions of slides from each disease.

Model
We used a fully convolutional network (FCN) with a cus-
tom architecture (Additional file 1: Table S2), which takes 
as input an image patch and predicts whether the center 
pixel of the patch was in the cortex, white matter or back-
ground. We trained a different model for each fold, giving 
us three models in all.

Training
During training, images were transformed with the fol-
lowing augmentations: random horizontal flip, random 
vertical flip, and random addition to hue and satura-
tion from the Imgaug library  (https://​github.​com/​aleju/​
imgaug). We used a categorical cross entropy loss, with 
different weights for each class based on their frequency 
in data to account for class imbalance. We used an Adam 
optimizer with a learning rate of 0.0001. Model training 

https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
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was performed for 20 epochs, after which each model 
achieved an average classification accuracy of at least 92% 
on training data and 85% on testing data.

Evaluation
For the final region identification, we applied all three 
models at the whole slide level in fully convolutional 
fashion [26] and took their consensus prediction to 
achieve the most accurate result. Specifically, for each 
model we took their values at the activation layer (i.e., 
class response for WM/CTX/Background), averaged 
them together across models, and then selected the class 
with the the maximum average response as the final clas-
sification. Lastly, post-processing steps using the python 
library, scikit-learn, functions remove_small_objects and 
remove_small holes (area threshold of 1000 pixels) were 
applied to further refine region identification. Consensus 
predictions were then evaluated by pathologists.

Model training for aggregate identification
Data
A total of 18 WSIs (6 AD, 6 PSP, 6 CBD) taken from the 
middle frontal gyrus and imaged at 20X magnification 
(0.5 microns per pixel) were used for training and testing. 
Aggregates were identified under pathologist supervision 
using the QuPath software as follows. First, to standard-
ize staining levels across slides, tissue samples were pre-
processed using the Estimate Stain Vectors function in 
QuPath [2]. Next, using the rectangle tool, 4–6 regions 
of interest (ROIs) were next selected across the white 
matter areas of the sample. Finally, manual threshold-
ing of the DAB signal was performed using the positive 
pixel count algorithm to identify AT8 positive areas. 
These areas were manually inspected and then exported 
to a format readable by our machine learning pipelines, 
such that each pixel in the analyzed rectangular area was 
identified as belonging to an aggregate (positive DAB 
staining), background (negative brown staining) or edge 
(at the border of aggregates and background) to serve as 
ground truth for training our models. In all, 74 rectangu-
lar regions with sizes between 160 K and 4 M microns2 
(~ 1 to 17 M pixels) were generated. For 3 out of the 18 
WSIs (one from each disease) we additionally generated 
ROIs from the cortex in the same manner to test the abil-
ity of our models to detect tau aggregates in this region.

Model
To get single pixel resolution in our aggregate prediction 
we employed a convolutional neural network with UNet 
architecture [30]. The model takes as input immunohis-
tochemistry (IHC) image patches and outputs patches of 
the same size so as to match the pathologist-generated 
ground truth where each pixel is classified as aggregate, 

background or edge. WSIs were split using twofold cross 
validation, such that each fold had equal number of slides 
from each disease. We trained a separate model for each 
fold.

Training
During training, images were transformed with the fol-
lowing augmentations from the Imgaug library: random 
horizontal flip, random vertical flip, and random addi-
tion to hue and saturation. The models were trained on 
400 × 400 pixel tiles randomly sampled the rectangu-
lar regions identified above. We used a categorical class 
entropy loss (measuring difference between the predicted 
and true pixel classes) with different weights for each 
class based on their frequency in data to account for 
class imbalance. Additionally, to prevent over- or under-
splitting of aggregates we added an additional image level 
loss that encourages the prediction to produce the same 
overall amount of edges as the ground truth. We used a 
Stochastic Gradient Descent optimizer with a learning 
rate of 0.001 and momentum of 0.5. Model training was 
performed for 50 epochs, after which our model achieved 
an average classification accuracy of at least 89% on train-
ing data and 82% on testing data.

Evaluation
From our two trained models, we selected the one with a 
higher cross-validation accuracy. For each WSI, we then 
applied our aggregate classifier across the entire slide, 
to generate an output image “mask” of the same size as 
the input slide with each pixel classified as background, 
aggregate or edge. During classification, we implemented 
a response threshold of 0.5, such that aggregate and edge 
predictions with a lower class response (i.e., low classifi-
cation confidence) were classified as background instead. 
WSIs and their aggregate masks were evaluated side-by-
side by pathologists.

Calculation of tau burden
We used output region masks from our region classifier 
to calculate the total area of a region, either cortex or 
white matter, in a WSI. We then quantified the tau bur-
den of that region in terms of the fraction of area occu-
pied by aggregates (i.e., pixels classified as Aggregate by 
the aggregate classifier).

Hand‑crafted feature analysis
Aggregate identification
From our aggregate masks, as described above, we first 
identified individual aggregates in the white matter 
region (as determined by the region classifier). Specifi-
cally, aggregates were identified by locating connected 
island of pixels classified as aggregate class, with distinct 
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aggregates separated by pixels classified as either back-
ground or edge.

Aggregate features
For each individual aggregate, we then used in-house 
software to calculate our set of hand-crafted features 
(Additional file 1: Table S3).

Aggregate quality control
Based on the inspection of a pathologist, we observed 
two types of artifacts in aggregate objects. The first was 
objects that were deemed too small to be considered an 
aggregate and were removed using the sklearn function 
remove_small_objects with an area minimum thresh-
old of 30 pixels. The second type of artifact was rarer 
instances of AT8 signal localized within nuclei but not 
attributable to a mature aggregate. To remove these arti-
facts from further analysis, we first tested whether our 
handcrafted features with the addition of texture features 
(Additional file  1: Table  S4) recognized them. To this 
end, we took a subset of 200 aggregates from each WSI, 
extracted features for each and clustered them using Uni-
form Manifold Approximation and Projection(UMAP) 
[27]. After verifying that these artifacts formed a unique 
cluster apart from other aggregates, we trained a ran-
dom forest classifier with these data to classify objects as 
either an aggregate or an artifact, and tested performance 
on a held out portion of the data. For all subsequent anal-
ysis, we applied the trained random forest model to filter 
out these artifacts.

Slide‑level analysis
After removing the artifacts (~ 4% of all initially detected 
aggregates) that failed our quality control procedure, for 
each feature, we calculated its median value across all 
aggregates in the white matter region of each WSI. We 
performed unsupervised clustering of WSIs based on 
these median feature values using the Clustermap func-
tion from the Seaborn toolbox with the metric ‘Corre-
lation’ and average linkage. For each feature, we used a 
Mann–Whitney test, with Bonferroni-based multiple-
hypothesis testing across disease comparison, to test 
whether feature values differed across the 3 diseases.

Automated disease classification using deep learning
We trained separate DL models on the cortex and white 
matter to predict disease (AD/CBD/PSP) directly from 
AT8 stained images (i.e., relevant image features are 
learned by the model without any need for manual cura-
tion of features as above).

Data
A total of 49 WSIs (16 AD, 20 PSP, 13 CBD) taken from 
the middle frontal gyrus and imaged at 20X magnifica-
tion (0.5 microns per pixel) were used for training and 
testing. From each WSI, we generated 10,000 image 
patches (224 × 224 pixel, 112 × 112 micron) from either 
the cortex or white matter regions to be used as input 
for the DL model.

Model
For our DL model, we used a multiple instance learn-
ing (MIL) network in order to mitigate the influence 
of uninformative patches on model training [17]. An 
MIL framework makes predictions on a group, or 
batch, of patches rather than an individual patch (Addi-
tional file 1: Figure S1), thereby better accommodating 
patches which lack any disease-specific information 
(e.g., those without aggregates).

Training
WSIs were split using threefold cross validation, keep-
ing the distribution of data from each disease consistent 
across each fold. We trained two models for each fold, 
one using data from the cortex regions of the WSIs, and 
one using data from the white matter regions, to assign 
AT8 stained image patches to their corresponding dis-
eases. We used a binary cross-entropy bag loss with dif-
ferent weights for each class based on their frequency 
in data to account for with class imbalance. We used an 
Stochastic Gradient Descent optimizer with a learning 
rate of 0.0001 and a momentum of 0.5. We trained each 
model for 3 epochs, after which our cortex and white 
matter models achieved an average patch-level classifi-
cation accuracy of at least 93% and 90% on testing data, 
respectively.

Evaluation
Each of the 3 cross-validation models was applied 
solely to data in its corresponding testing set (i.e., had 
not been used in training). For validation, 1000 patches 
were extracted from each slide. Individual patches were 
classified into the 3 diseases to measure patch level per-
formance. To determine disease classification at the 
slide level, we calculated the disease class as the major-
ity class from those 1000 patches.

Interpretation of deep learning classification features
UMAP clustering
We used 2000 image patches from the testing set of a 
single fold from our Disease Classification DL model. 
From each image patch, we extracted 1024 features 
using the second to last layer of our DL model (i.e., 
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layer before disease classification). We then used the 
output feature matrix (2000 × 1024) as input for the 
UMAP function with an n_neighbors value of 5 and a 
min_dist of 1.

Handcrafted features calculation
For each image patch described above, we applied our 
aggregate classifier to segment aggregates and removed 
artifacts as described in the Aggregate Quality Con-
trol section. We next calculated the feature values for 
Area, Eccentricity, and Minor Axis length as described 
in Aggregate Features section and represented each 
patch by the mean feature values of the aggregates they 
contained.

Results
Automated identification of white matter and aggregates
We first sought to automate the process of (1) segmenting 
gross cortex and WM areas; and (2) identifying individ-
ual tau aggregates. While manual annotations by trained 
pathologists could be used for these tasks, the number of 
annotations required would be both laborious and time-
consuming. Therefore, we instead automated these tasks 

by training two separate deep learning (DL) models from 
a significantly smaller amount of pathologist annotation 
data and applying them to our full dataset (Fig. 2).

We first trained DL models to segment tissue regions 
as cortex, WM or background, based on pathologist 
demarcations of these regions in 37 AT8 stained WSI. Of 
these WSI, 21 are from the middle frontal gyrus, which 
is the focus of this study, while the remaining are from 
the hippocampus, superior temporal gyrus, lateral pari-
etal cortex, and calcarine cortex. To test how our mod-
els generalized to images on which they were not trained, 
we adopted a threefold cross validation approach: we 
split the slides into three groups, trained 3 models (each 
trained on 2 of the three parts), and finally tested the per-
formance of each model on the third of slides it had not 
seen (“Methods”). Our model accurately classified cor-
tex, WM and background image patches 89% of the time 
(Fig. 2a). This ability to distinguish WM and cortex was 
true for all three diseases, although our model struggled 
most with CBD cases where tau burden was comparable 
in white matter and cortex (Additional file 1: Figure S2a). 
Satisfied with the performance of these models, for 
further analysis we employed a consensus model that 

Fig. 2  DL accurately identifies tissue regions and AT8-stained aggregates. For both region and aggregate models, a cross-validation scheme was 
used to generate multiple models, each trained on part of the data and evaluated on the rest. We report performance (left column) using confusion 
matrices which show how image areas with known true labels (rows) are assigned to different predicted classes (columns). Values denote fractions 
of patches/aggregates belonging to true class (i.e., rows add up to one) assigned to corresponding predicted class averaged across cross-validation 
models, with standard deviations shown in parenthesis. Right column shows sample classification results. Note: BG = Background. a Region 
segmentation: threefold cross validation was used and performance is measured in terms of fraction of image-patches from a region that are 
correctly classified (diagonal entries in dark blue). b Aggregate segmentation: twofold cross validation was used and performance is measured in 
terms of fraction of pixels that are correctly classified
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considers the average prediction from all three models 
(“Methods”). We used this consensus model to profile all 
49 middle-frontal gyrus WSI used in this study, and two 
independent neuropathologists (RC and CW) confirmed 
the accurate segmentation of the WM and cortex regions 
in these slides (Additional file 1: Figure S2b).

We similarly trained a model to identify individual 
aggregates based on pathologist annotations of aggregate 
boundaries (approximate 360,000 annotated aggregates) 
in 74 WM regions from 18 AT8 stained images of the 
middle-frontal gyrus region. This model classifies each 
pixel in an image as background (no AT8 staining), aggre-
gate (pixels with AT8 staining) or edge (at the border 
of an aggregate). The explicit inclusion of the edge class 
encourages our model to accurately capture aggregate 
boundaries (e.g., by separating neighboring aggregates) 
which is important for the downstream analysis of aggre-
gate shape. We trained the model using 9 of the 18 slides 
and tested performance on the 9 remaining slides (three 
from each disease). The model distinguished aggregates 
from background with high accuracy, as shown by our 
pixel metrics, however the boundary between edge and 
aggregate pixels was sometimes confused (i.e., the sin-
gle pixel boundary between these classes would shift 
toward or away from the aggregate) (Fig. 2b, Additional 
file  1: Figure  S3a). We found that this minor confusion 
did not affect our ability to measure aggregate shape, as 
evidenced by the segmentation metrics and strong cor-
relation between extracted downstream features in true 
and predicted aggregates (Additional file  1: Figure  S4). 

We also tested the performance of this model (trained in 
WM) on cortical regions. While the identification of AT8 
staining vs background was accurate, in areas where cor-
tical density of aggregates was high, the model (or even 
trained pathologists) could not always separate individual 
aggregates (Additional file  1: Figure  S3b). Thus, we felt 
confident in using this model for identification of total 
tau staining in cortex and for identification of individual 
aggregates in the WM.

Quantification of tau burden
While it is known that tau aggregates are present in both 
WM and cortex, it is unclear how these regions relate, 
and whether any relationship is disease-specific. To 
explore this, for each sample we calculated the fraction 
of area occupied by tau aggregates (as determined by our 
aggregate model), a proxy for tau burden, in the WM and 
cortex regions. For a given disease, we observed a strong 
linear relationship between tau burden in the WM and 
cortex: samples with a higher tau burden in the cortex 
also showed increased tau burden in the WM (Fig.  3). 
Interestingly, the distribution of tau burden between the 
cortex and WM appeared disease-specific. AD samples 
largely displayed high tau burden in the cortex, but very 
little in the WM (an order of magnitude less than the 
cortex). Only a small subset of AD samples appeared to 
deviate from these trends, exhibiting unusually low tau 
burden in the cortex. In contrast, in both PSP and CBD 
the tau burden in the WM and cortex were more com-
parable (burden in WM was 1/3rd of the cortex in PSP 

Fig. 3  Tau burden is disease specific. Scatter plot of tau burden in cortex (x-axis) vs WM (y-axis) regions across multiple WSI (individual data 
points) from different diseases (point colors). Tau burden in a region was estimated by the ratio of area covered by tau aggregates (from aggregate 
classifier) to total area of the region (WM/cortex from the region classifier). Data from each disease are fit using a least squares straight-line fit and 
the best-fit slope is shown next to the fitted line
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and 3/4th in CBD), although CBD samples frequently 
displayed a higher burden than PSP in both regions. Con-
gruent with this finding, a recent study also found that 
different tauopathies also displayed distinct tau burden in 
the white matter [16]. These results indicate that consid-
eration of tau burden in both the cortex and WM could 
lead to improved disease separation, and prompted us to 
further examine properties of aggregates in the WM.

Morphological characterization of tau aggregates
We sought to understand how aggregate morphology 
in the WM differed in AD, PSP and CBD. Unlike in the 
cortex, where tau aggregates in different diseases differ in 
the occurrence of stereotypical morphologies (e.g., neu-
rofibrillary tangles and tufted astrocytes), less is known 
about differences between the aggregates in the WM 
among these disorders. We therefore profiled aggregate 
morphology based on a panel of features capturing dif-
ferent aspects of size (i.e., area, length, width) and shape 
(i.e., eccentricity, curvature, solidity) (Fig. 4a, Additional 
file 1: Table S3). We excluded features such as texture or 
staining intensity, as these are harder to interpret and 
more susceptible to experimental variability. Addition-
ally, we removed false aggregate detections arising from 
rare off-target staining (“Methods”) although the overall 
results are largely unaffected by this process (Additional 
file 1: Figure S5). For each WSI, we then took the median 
value of each morphological feature across all aggregates 

in the WM to generate a representative WM morpholog-
ical profile of that slide.

To test, in an unsupervised fashion, the relationship 
between disease and aggregate morphology we per-
formed hierarchical clustering of the WM morphological 
profiles (Fig.  4b). Surprisingly, despite the general-pur-
pose collection of shape features present in our morpho-
logical profiles, we saw definite clustering among WSI 
from the same disease. The aggregate data from CBD 
WSIs stood out because of their larger values of features 
characterizing aggregate size (e.g., area). Aggregates from 
PSP WSIs exhibited similar length (major axis length 
and extent) as CBD, but based on their greater eccen-
tricity and lower values of minor axis length, width and 
curvature, seemed to be long and linear. In contrast, AD 
aggregates had shorter lengths but showed increased 
curvature suggestive of short curled segments. Finally, 
closer inspection of the AD WSIs that did not cluster well 
revealed (Additional file  1: Figure  S6) that these WSIs 
were also outliers in our tau burden analysis that had 
unusually low tau burden in WM regions, possibly mak-
ing them more susceptible to fluctuations and the occa-
sional segmentation error.

To determine whether these observed differences in 
median feature values were statistically significant, we 
next compared their distributions between diseases 
(Fig.  4c). Of the 9 features examined, 3 showed statisti-
cally significant differences for CBD compared to the 

Fig. 4  Aggregates from different diseases show distinct shapes and sizes. Individual aggregates were identified in the WM of WSI and were 
characterized by features describing their size and shape. a Example image patch (left) from a WSI with individual aggregates colored based on 
sample features: area, eccentricity, and minor axis length. b Individual WSI (rows) were characterized based on median feature values (columns) of 
aggregates in their WM and were ordered based on hierarchical clustering. Values within each feature were z-score normalized to allow comparison 
across features. Colors on top (Red/blue/green) indicate disease associated with each WSI. c Boxplots of median feature values for area, eccentricity, 
and minor axis length shown in WM regions of WSI (gray dots) compared across each disease. Mann–Whitney test, with Bonferroni-based 
multiple-hypothesis testing correction (across diseases) was used for statistical comparison
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other tauopathies, while 2 showed statistically significant 
differences for PSP compared to the other tauopathies 
(Additional file 1: Figure S7). Among the most prominent 
differences, we found that AD and PSP aggregates had 
reduced area and thickness than CBD, while in AD aggre-
gates were significantly shorter (extent and major axis 
length) than in the others. These statistical results are 
consistent with a qualitative characterization of aggre-
gates in CBD being large and round, those in PSP being 
long, thin, and straight, and AD exhibiting short curly 
aggregates.

Disease classification of tauopathies using either cortex 
of white matter pathology
While our results show that WM aggregate morphologies 
differ on average between diseases, we sought to deter-
mine whether (a) the phenotypic differences were strong 
enough to allow disease classification based on localized 
tissue patches, and (b) how discriminative power based 
on WM compared with using cortex pathological infor-
mation (Fig. 5a). We opted to use a deep learning strat-
egy over hand-crafted features because: (1) segmentation 
accuracy of individual aggregates in the cortex dropped 
when pathology became exceedingly dense, which might 
bias performance measurements when comparing cor-
tex/WM classification; and (2) a DL approach enabled 
our analysis to go beyond our selected hand-crafted 
features and utilize all available information from tissue 
data. To this end, we trained two separate DL classifiers 
on tissue data solely from either (1) cortex region seg-
mentations or (2) WM region segmentations. To ensure 
fairness in comparisons, both were trained and tested on 
the same WSIs using three-fold cross-validation, result-
ing in 3 trained models per region. We first evaluated 
classifier performance by comparing their accuracy on 
individual image patches from each testing set. Strikingly, 
both models achieved a high accuracy (greater than 90%) 
with our cortex model performing only slightly better on 

AD samples (Fig. 5b). The high accuracy obtained by the 
WM DL classifier reinforces our previous findings that 
pathology in these regions contain disease-specific signal 
and suggests that their specificity may be nearly as dis-
tinct as that in the cortex.

We next sought to understand whether the WM and 
cortex-based classifiers struggled on the same samples 
or whether these two regions provided complemen-
tary information for disease classification. As above, 
we analyzed patches from our full panel of 49 WSI, and 
quantified what fraction of patches in each sample were 
assigned to the correct disease type by the 2 models. The 
majority of WSIs (43) were accurately classified (> 50%) 
by both DL classifiers (Additional file 1: Figure S8a). Of 
the remaining 6 that were misclassified, 2 were misclas-
sified by both classifiers, 2 were only misclassified by 
our WM classifier, and 2 were only misclassified by our 
cortex classifier. Indeed, by taking the consensus result 
of both cortex and WM classifiers, we achieved the high-
est classification accuracy, albeit marginally (Additional 
file  1: Figure  S8b). Together, these results indicate that 
pathology from the cortex and white matter largely com-
plement each other, and in some cases may offer additive 
information.

Relating machine learning features to visual aggregate 
phenotypes
Finally, given the black box nature of our automated 
disease classification and the disconnect between 
our aggregate features (such as minor-axis length) 
and descriptions of aggregates in neuropathology, we 
sought to reconcile these different descriptors. Accord-
ingly, we arranged white matter image patches from 
AD, PSP and CBD based on their similarity as perceived 
by the automated disease classifier (Fig. 6a, “Methods”; 
nearby points represent more similar patches), along 
with the values of prominent feature descriptors for 
aggregates in these patches (Fig.  6b). Additionally, we 

Fig. 5  Disease classification from DL. a Overview of our DL approach in which cortex/WM regions are used to train two separate DL models for 
disease classification at an image patch level. b Confusion matrices comparing the average patch-level classification accuracy using cortex (left) or 
WM (right) data
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displayed sample image patches from different regions 
of these plots to help connect our image descriptors to 
visual phenotypes. As expected, our data formed dis-
tinct clusters for each disease (Fig.  6a, AD: red, PSP: 
blue, CBD: green). Encouragingly, we observed that 
image data from the center of each cluster reinforce our 
findings based on the hand-crafted features (Fig.  6a). 
Specifically, PSP aggregates were long and thin with 
high eccentricity and low minor axis length, AD aggre-
gates were small and round, with lower eccentric-
ity, and CBD aggregates were bigger and less straight, 
with larger areas. As we move from disease  centers 
towards neighboring disease clusters, we observe a 
continuous transition in phenotypes and the associated 
image descriptors, with aggregates near the border of 
two clusters exhibiting a mixture of the characteristic 
morphologies and handcrafted features (highlighting 
the heterogeneity of aggregates in the white matter). 
Taken together, these results suggest the consistency 
between our different approaches and provide a means 

to connect them to more conventional neuropathologi-
cal descriptions.

Discussion
Pathologist characterization of aggregate staining has 
long been the gold standard for defining neurodegen-
erative diseases. However, there is potential bias in the 
development of such diagnostic criteria, be it in terms 
of the regions analyzed (e.g., gray vs white) due to their 
perceived disease relevance, or the choice of aggregates 
characterized (e.g., only a subset of easily recognizable 
aggregates are used in distinguishing tauopathies). Given 
the diversity of clinical features within a single diagnosis, 
a deeper characterization of structural pathology might 
improve disease stratification and clinico-pathologic 
correlation. A challenge to developing novel pathologic 
criteria is the quantity and complexity of aggregate phe-
notypes within a single WSI. In the current study, we 
sought to understand the nature and disease-specificity 
of tau aggregate morphology in the WM across different 

Fig. 6  Interpretation of WM pathological features used for disease classification. a UMAP visualization of image patches clustered based on 
their similarity as perceived by the automated disease classifier (based on the 1024-dimensional output of the penultimate layer of the model; 
“Methods”). Data points are colored based on their ground truth disease label and representative images of data at different areas within clusters 
are displayed. b The same UMAP visualization from a with data points instead colored by the average feature values (across aggregates in the 
corresponding image patch) for area, eccentricity, and minor axis length
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tauopathies. Thus, we developed a computational pipe-
line to analyze and quantify tau staining in whole slide 
images of AT8 stained tissue from patients suffering from 
AD, PSP, or CBD. We first developed and validated DL 
models to automatically demarcate the cortex and WM 
regions in AT8-stained WSIs and identify tau aggregates 
therein. Then, in contrast to previous efforts that have 
employed pathologist-derived scores for classification 
[6, 21], this study uniquely employed cutting edge ML 
technology to accurately identify every individual tau 
aggregate in the white matter of AD, PSP, and CBD cases, 
dissect and quantify morphological features of these 
aggregates, and identify disease-specific signatures.

Past work has demonstrated tau pathology involves 
neurons and glia in both gray and white matter compart-
ments, but the involvement of these cellular and anatomic 
compartments varies amongst the different tauopathies. 
AD is known to be a mainly neuronal tauopathy, whereas 
PSP and CBD have a higher fraction of glial involvement 
[14, 15, 18, 22]. These differences are reflected in the 
canonical cortical tau aggregates specific for each disor-
der: neurofibrillary tangles along with neuritic plaques 
are characteristic for AD, tufted astrocytes for PSP, and 
astrocytic plaques for CBD. Based on the staining char-
acteristic of these canonical aggregates, it is not hard to 
determine what cellular compartment they involve (also 
implied in their names), but most of the time, these 
canonical aggregates only represent a small fraction of 
all tau aggregates both in gray and white matter [9, 15, 
35]. Tau burden in gray and white matter is also variable 
across these diseases, and although it is not entirely clear 
what are the exact roles of gray and white matter involve-
ment in disease progression and propagation, studies in 
animal models suggest that white matter may be involved 
in disease propagation to remote sites [29].

Characterization of white matter pathology
Our work recapitulates the disease specific findings for 
tau burden such as higher white matter tau pathology 
in CBD [16]. However, a novel aspect is the simultane-
ous quantification of cortical and white matter tau bur-
den within an individual subject which we show is highly 
correlated in disease-specific fashion: tau burden in AD 
samples was largely localized to the cortex, while CBD 
and PSP both displayed a more equitable distribution 
of tau between the two regions, with CBD samples fre-
quently displaying a higher tau burden than PSP in both 
regions. The strong correlation between WM and cortical 
burdens at a single patient level for a disease suggests that 
similar pathophysiologies are at play in these regions. 
Next, we determined that WM aggregates in AD, CBD 
and PSP are morphologically distinct. Indeed, the dis-
eases group separately even with a simple unsupervised 

clustering based on just a few features characterizing size 
and shape of the aggregates, reinforcing the substantial 
differences in their phenotypes. This approach of extract-
ing “hand-crafted” features allowed us to infer inter-
pretable disease-specific differences: WM aggregates in 
CBD are large, and round, those in PSP are long, thin, 
and straight, and those in AD are short and curly. Lastly, 
we built a DL pipeline to distinguish AD, CBD and PSP 
based on either their WM or cortical tau staining (using 
all aggregate properties, not just size and shape). The per-
formance of classification based on WM and cortex are 
comparable, and can be complementary (combining both 
regions improved performance). In addition to more 
accurate disease classification, combining both regions 
may provide better insight into the pathophysiology of 
the variation of cortical and WM tau distributions within 
the spectrum of each tauopathy, as well as across differ-
ent tauopathies.

Future work and limitations of current study
While our studies reveal clear disease-specific mor-
phological differences in tau aggregates, they do not 
yet explain the underlying cell-biological reasons for 
these differences. For canonical cortical aggregates (e.g., 
neurofibrillary tangles or tufted astrocytes) in various 
tauopathies, their shape has been used to infer the cel-
lular compartment where the tau aggregate resides. The 
lack of characteristic aggregate morphologies has pre-
vented a similar approach in the WM. We believe our 
ability to quantify disease specific aggregate phenotypes, 
identify which ones are most disease specific, and relate 
them back to the original images, makes it possible to 
generate testable hypotheses in this regard. For exam-
ple, high eccentricity and short minor axis length seen 
in PSP, which is suggestive of long, narrow and continu-
ous aggregates, is consistent with axonal projections. 
Such hypotheses can drive future studies that will help us 
understand how cell type and subcellular compartment 
impact aggregate morphology in the WM. Another pow-
erful future application of our work is to help discrimi-
nate rare variants that are hard to distinguish from the 
diseases studied here, for example FTLD-MAPT-NOS 
cases or cases that are difficult to discriminate as either 
PSP or CBD. Finally, our approaches are very general and 
could be easily extended beyond the scope of tauopathies 
to study the role of WM pathology in other neurodegen-
erative diseases.

We note however that some degree of caution must 
be exercised in interpreting our results. First, the cases 
selected may not reflect the full range of heterogeneity 
in these diseases. It will be important to capture addi-
tional sources of biological and technical variation by 
testing these approaches in a larger independent data 
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set spanning multiple institutions. Similarly, for this 
proof of principle study we restricted ourselves to a sin-
gle brain region (frontal cortex and WM) with definitive 
ground truth disease assignments. Future studies can 
test the robustness of our results in other brain regions 
and samples that contain co-morbidities. Additionally, 
we note that the current study was restricted to the AT8 
antibody. While morphology of AT8 aggregates is widely 
used for the diagnosis of AD, PSP, and CBD and AT8 is 
highly sensitive to phosphorylated tau protein, it is not 
specific to either 3R and 4R phosphorylated tau protein 
whose presence varies across these diseases [23]. Thus, 
further insights may be gained by the use of 3R and 4R 
specific antibodies. Finally, an inherent limitation of 
studying WSIs is the inability to capture the 3D structure 
of objects present in brain tissue. Axonal projections, 
for example, might appear either elongated or punctate 
when viewed from a two-dimensional slide depending on 
their orientation during tissue sectioning. Here, by aver-
aging results across a slide we hoped to capture a range of 
3D orientations, and our results suggest that this was at 
least partly successful. Nonetheless, it would be undoubt-
edly more powerful to take into account aggregate and 
slide orientation or to perform a full 3D analysis.

Machine learning applications in neuropathology
While the present work focuses on existing disease 
definitions, it also highlights a far larger opportunity 
for machine learning to aid in the development of new, 
more clinically prognostic, stratifications of disease. Each 
tauopathy itself has a spectrum of clinical and radio-
graphic presentations [23], and applying our current 
approach to study morphological differences between tau 
aggregates within each disease or commonalities across 
different tauopathies may help us to identify disease sub-
types. These stratifications could then be correlated with 
or refined by clinical outcomes. Furthermore, it is known 
from biochemical studies [19, 31, 36], and more recently 
cryo-EM studies that different protein strains are present 
in tauopathies and other neurodegenerative diseases (e.g., 
synucleinopathies). Thus, a key question, as we continue 
to obtain structural insights from these strain differences, 
is how structural similarity at the protein level maps to 
morphological similarity at the aggregate level and how 
these relations predict disease spread within the brain.

In summary, we demonstrate how deep learning 
approaches can be used to characterize tau aggregation 
in the WM of WSI from AD, PSP and CBD patients. 
WM aggregates are relatively less studied than those in 
the cortex and do not necessarily display the stereotypi-
cal morphologies (e.g., plaques, tangles) seen in the cor-
tex. Yet by integrating image features across thousands 

of aggregates, our ML approaches identified character-
istic disease-specific differences in WM aggregate mor-
phology, with discriminative power comparable to that 
from analysis of cortex. Our results specifically high-
light the need of further studying tau aggregation in the 
WM and more broadly the value of ML driven studies 
in the field of neuropathology.
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